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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

Solid state chemists spend a great deal of time trying to understand the con^lex set 

of variaUes which relate a compound's composition and its observed structure. Some of 

these variables inchide atomic size, electronic configuration, and electronegativity. Many 

classification schemes and sets of'rules' have been proposed to separate groins (or classes) 

of conpjunds fix>m a larger &mify of structures based on some unifying characteristic or 

criterion. For example. Wade's Rules account £)r the structure and bonding within 

dehahedral chisters counting pairs of electrons available for terminal (exo-) and skeletal 

bonding.̂ ^  ̂Another exan^le is the Darken-Gurry method for predicting the extent of solid 

solubility in alloy systenos based on the differences in size and electronegativities of the 

elements involved.̂ ' There have been several classification schemes proposed based on the 

idea of valence electron concentration per atom (vec) which have proved useful for 

e}q)laining the observation of certain intermetaOic structure types. The Brewer-Engel Model 

correlates hexagonal close-packed (hep), cubic close-packed (ccp) and body-centered cubic 

(bcc) packed structures, with the number of s and p valence electrons.̂  ̂ This model uses 

primarify the valence electron configurations and structure types of the elements to relate bcc 

with one valence electron per atom (ve)(Le. Na), hep with two ve (Le. Zn), and ccp with 3 

ve (Le. Al). Perh£q}s the two most well-known classes of solid state materials for v^^ch the 

ideas of valence electron concentration are critical, are the Hume-Rothery electron phases 

and the Zintl phases. 

Main groi  ̂intermetaDics can be classified into three groiq>s based on their (vec); the 

Hume-Rothery phases with vec < 2, the classical Zintl phases with vec > 4, and conq)ounds 

with vec between 2 and 4, ^^ose structures cannot be rationalized by any sinple electron 

counting rules. (Note: the vec as ^lied to the classical Zintl phases is counted as the 

number of valence electrons per post-transition (or anionic) atom, not per 'all' atoms as in 

the Hume-Rothery fdiases.) Conqwunds within these three classes display a rich variety of 
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structures and coiqpositions ranging fix)m close-packed structures with wide phase widths to 

valence compounds containing some covalent two-center, two-electron bonds.̂ '̂  ̂ The 

Hume-Rothery electron phases are well-known intermetallics whose structures are 

correlated with narrow ranges of vec between 1 and 2 ( Le. CuZn = 3 ve / 2 atoms, vec = 

1.5). The classical Zintl phases are another class of intermetallic con^unds formed between 

electropositive metals and main groiq) elements from groups 13-17, >^se structures are 

determined the octet rule. Since the Meas of Hume-Rotbery and Zintl, as well as the two 

classes of intermetallic materials ̂ ^ch bear their names, provide a foundation and in part the 

motivation for the research and results to be discussed in this thesis, a brief review is 

appropriate. 

Hume-Rothery Phases 

In 1926 William Hume-Rothery published a paper based on his thesis research on 

intermetallic conq)ounds in \^iich he made the observation that for CuZn, CusAl and 

CusSn, which all form the P-brass structure, the ratio of valence electrons to atoms was 3:2 

(vec = 1.5),̂ ^"  ̂ Hume-Rothery's observation was a h^akthrough in the study of 

intermetallics. Following this mitial investigation by Hume-Rothery, A. J. Bradley 

conq)leted extensive work on the y-brass structures in the Cu-Zn, and Cu-Al systems, and 

determined that for the y-^res CusZng, CU9AI4 and Cu3iSng, the valence electron to atom 

ratio was 21:13 {yec = 1.61).̂  Later, Ame Westgren and Gdsta Phragnu  ̂established that 

the hexagonal s phases that form in many binary Cu, Ag and Au systems aU had the valence 

electron to atom ratio of 7:4, (vec = 1.75).'*' J. D. Bemal suggested that these phases be 

called electron compounds, but they are often referred to as Hume-Rothery phases. Many 

of the structures of the Hume-Rothery phases are very conq)lex, making these single 

counting rules even more elegant and usefiiL Table 1.1 includes the structure types and 

electron phases with their respective ranges in vec. The silver - zinc phase diagram^^°  ̂

contains three of the most well known Hume-Rothery phases, P-brass (AgZn, vec = 1.5), y-

brass (AgsZng, vec = 1.61), and the s-phase (AgZns, vec = 1.75). 
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Table 1.1: Summary of the electron phases with 1.0 < vec < 2.0.̂ "  ̂

Phase Type Structure vec range 

a £c.c. 1.00 -1.42 
P b.c.c. 1.36-1.59 

cubic 1.40 - 1.54 
y b.c.c. 1.54-1.70 
s cubic 1.55-2.00 

h«c*p. 1.32 -1.83 
8 h.c.p. 1.65 -1.89 

h.c.p. 1.93-2.0 

Zintl Phases 

In 1929 Eduard 7mtl published a short paper entitled ''Salt-like Con^Munds of 

Sodium and their Transition to IntermetaOic Phases" This publication marked the 

introduction of has come to be known as the ''Zintl concept",̂ ^^  ̂ ^^ch Roald 

HofSnann caUs "the single most in^rtant theoretical concept in solid state chemistry of this 

century".̂ ^^  ̂ In the years following that frst p^)er, 7mt] carried out many e}q)eriments 

involving anions and pofyanions of the groiq>s 14-17 elements (S'̂ , Sog"*) in liquid ammonia, 

and performed structural investigatioas of intennetallic materials using X-ray dif&actioa 

Zintl made the observation that mai  ̂of the intermetaHic conqwunds he studied dki not 

behave like typical Hume-Rothery phases, and in some cases exhibited salt-like behavior. 

Some of the con^unds formed between an electropositive metal and a main groi  ̂metal 

had higher melting points than either elemental con^nent, were poorer electrical 

conductors and were more brittle than ^ical alloy pbases.̂ '̂  Zind's analysis of the 

structures of these con]|X)unds was based on the idea that the electropositive metal donates 

its valence electrons to the electronegative main groi  ̂metal, and that the octet rule can be 

used to ratiooalize the connectivity within the anionic main groiq> network. A beautiful 

exanq)le demonstrating the sinq)licity and usefulness of this concept is NaTL the 

transfer of an electron from Na, the Tl's become formally TT anions, now with four valence 

electrons. Employing the octet rule, a tetravalent species would be e3q)ected to be in a 4-
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Figure 1.1: The structure ofNaTl in vduch the Na atoms (gray) donate their electron to the 
n atoms (white) ̂ ch form a diamond network. 

coordinate enviromnent, and indeed the XT ions in Nail form a diamond-type network with 

the Na  ̂ counterions packed in the voids, (see Figure 1.1). Through the study of many 

intermetalHc materials formed between main grotq) metals and electropositive metals, Zintl 

showed that many con^unds containing elements from groups 14-17 formed structures 

\i^ch could be likewise rationalized using the octet rule. However, conqx)unds formed with 

groiq) 13 elements often adopted alloy structures with wider homogeneity widths, and 

followed no single counting rules. The "Zintl border" separates groiq)s 13 and 14. 

Broadty defined, both Hume-Rotheiy and Zintl phases are intermetallic materials, 

however, the differences between these two classes are striking. It is not clear though, how 

intermetallic phases vsiiose vec's are between the "extremes" defined by the Hume-Rothery 

phases and the classical Zintl phases (Le. con^unds with 2 £ vec ̂  4), should be classified. 

In order to explore the connection between vec and structure type for the 

con:qK>unds >»^h lie in this intermBdiate vec region, we have focused on the synthesis, 

characterization and electronic structure investigations of new ternary ahiminum-rich 

intermetallics. Many intermetallics present chemists with con^l  ̂structural challenges such 
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as fiactk>nal and mixed site ocaq)ancies, site preferences, vacancy ordering and structural 

phase transitions. Li addition to care&l crystallography, electronic structure calculations are 

an essential tool for understandmg the structures and bonding of these conq)ounds. There 

are several reasons this investigation of ahgninum-rich phases is in^rtant to chemists, 

(1) careful systematic study of the con^osition (ie phase width) and electronic structure of 

new aluminides adds vahiable information to the larger collection of intermetallic con^unds 

with vec between 0 to 8, including the Hume-Rothery and Zintl phases, and (2) >^e the 

structures of wacQ binary and tonary ahmiinides have been identified, there are mai  ̂more 

as-yet une^lored systems with intermediate \ec's which hold exciting possibilities for 

unique structures and physical properties. The Hume-Rothery phases are metallic 

conq)ounds, and the traditional Zintl phases, in which the atoms in the anionic network obey 

the octet rule, are usually semiconductors or insulators. Ahiminumrrich confounds, whose 

structures and bonding are not easify rationalized with electron counting rules, may have 

unexpected and desirable physical properties, such as high ten:q)erature metallic conductivity, 

high strength alloys, thermoelectrics, and siq)erconductivity. 

Aluminides are a challenging groiq) of conqwunds for a variety of reasons, mainly 

due to unique features of ahmnnum itseE The rich chister chemistty of boron, gallium and 

the lower groiq> 13 members has not been as forthcoming for aluminum.'̂ "' Even thou  ̂the 

7.intl border separates groups 13 and 14, there are well documented Zintl phases formed 

with the bwer groiq) 13 members, but relative  ̂few aluminum-rich Zintl phases.'̂ '̂ In 

combination with the alkali and alkaline earth metals, Ga, In and T1 form many phases 

containing isolated clusters and anionic firameworks vibose connectivity can be rationalized 

by the octet rule.̂  ̂ In contrast, binary and ternary ahsninides containing electropositive 

metals (and/or transition metals) adopt structure types like the Laves phases, CaCus, and 

other close packed intermetallic structures. In £ict, the formation of several aluminum-

rich phases has been correlated to certain narrow ranges of vec from 1-3, with some 

success.'̂  ̂ While there isn't a definitive e^qplanation for the differences observed in 
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ahnninides versus con^)oimds containing tlie lower groiq) 13 elements, several observations 

about ahmdnum itself provide insi^it 

Despite its position direct  ̂ under boron and above gallium, in roacsy respects 

alimuDimi bas a very different behavior than the other groiq> 13 elements. Aluminum, an fee 

metal, has the lowest room tenq)«ature resistivity of any of the groiq> 13 elements, 2.65 x 

10"  ̂ Q-cm, versus boron 1.8 x 10® £2-cm, gaDium ~27 x 10"  ̂ Q-cm, indiiim 8.37 x 10"® 

Q-cm, and T1 18.0 x 10"  ̂ Q-cm.'̂ ^  ̂ Aluminum has the lowest electronegativity of any 

group 13 element (B:2.0, Atl.S, Ga;1.6, In:1.7, Tl:1.8). In feet. Greenwood and 

Eamshaw report that for trends in both ionization energies and decreasing stability of the 

highest oxidation state, boron and aluminum fit nicety above the groiq) 3 metals (Sc, Y, La 

and Ac), rather than above Ga, In and XL Despite aluminum's resemblance to the late 

transition metals (such as Cu and Ag) in its elemental structure and metallic properties, it 

does not have a d-core or high tying accessible d-orbitals like Ga, In and 11 (^^ch in the 

same ways do not resemble the late transition metals). One of the consequences of the d-

core for the heavier groiq> 13 elements is that their valence s and p orbitals lie lower in 

energy than those of AL (Le. AL 3s = -12,30 eV, 3p = -6.50 eV, Ga; 4s = -14.58 eV, 4p = -

6.75 eV).̂  All of these fectors combine to make the structures and properties of ahiminum 

containing materials rather unpredictable, but possibty exciting. 

Aluminum has been an inqwrtant conqmnent for lightweight materials plications 

for maiQr decades. Recentty however, ahiminum has played an integral role in the young but 

growing e}q)loration and development of quasicrystaUine materials.'̂ '̂  Mai^r of the stable 

icosahedral and dodecahedral quasiciystalline phases are aluminimirrich compounds such as 

Al70Pd21.5Mh8.s- Quasiciystals are an exciting new class of materials with unique and rather 

une3q)ected bulk and sur&ce properties, not to mention the fundamental interest in the 

structures and synthesis of these non-classicalty crystalline compounds. Careful study of 

ahmunides containing icosahedral imfts (^^iuse symmetry is lowered to conform to classical 

crystallography), could provide valuable information in the search for new quasicrystaUine 

conqwunds. 
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Preview of Reseaich Projects 

Chapter 2; The ̂ oithesis and characterization of ternary trieleides forming a temaiy variant 
of the NaZni3 structure 

The ternary confound, BaCu*Ali3-x (5 < x < 6), forms the NaZn  ̂ structure, in 

which Ba atoms are surrounded by a J[Cu(CUyAli2_y)] ( 4 < y < 5) cuhw fi-amework of Cu-

centered icosahedra with randomly arranged copper (ca. 33%) and aluminum (ca. 67%) 

atoms. This structure is a network of stuffed icosahedra and snub cubes wiiich are packed in 

a CsCl arrangement BaCusAIg has a vec of 2.38 and has elemental conqwnents commonfy  ̂

found in both ZML and Hume-Rotheiy phases, making it a 'bridge' between the two ^milies. 

This project consisted of the mvestigation of the phase width of BaCuxMa-x ( 0 < x < 13), a 

carefol examinatioii of the electronic structure and bonding within the metallic Cu-Al 

framework, and the exploration of other combinations of elements )^ch form this same 

structure. BaCusAls is an exanq)le of a ternary ahmiinide vdiose vec maximizes the bonding 

within the J[CujAlg] network as observed in its overly populations. One of the in^rtant 

aspects of this synthetic effort was the progression from Cu to Ag to Au, and consideration 

of the effects of systematically changing the transition metal on the products and structures 

observed-

Chapter 3: Electronic structure calculations on ternary atuminide systems forming the 
NaZhis (BaCusAlg) and TbMhu (LnCu4Al8) structures 

The preparation of the temaiy ahuninides began with the syntl^sis of BaCusAls and 

SrCueAl?, and then e:q)anded to LnCufiAl? systems = rare earth metals). While 

EuCu6Al7 and LaCueAl? are isostructural with BaCusAls, all the other rare earth elements, in 

combination with copper and aluminum do not form the NaZn  ̂structure; rather, they form 

the ThMni2 structure. According to Pearson's Handbook of Crystallographic Data for 

Intermetallic Phases, 122 ternary ahminides form the ThMn  ̂ structure type, with 

con^sitions; LnMiAU, LnMsAl?, or LnMfiAle, (where Ln = rare earth or actinide element, 

and M = Cr, Nfo, Fe, Cu).̂ '"^ '̂ The vec for these coniqwunds are calculated based on the 
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number of electrons per fiamework atom, not including the alkaline earth or rare earth 

atoms. For exaiiq)]e, the vec of BaCusAfc is (2 + 5 + 24)/13 = 2.38, and for DyCutAlg the 

vec is (3 + 4 + 24) /12 = 2.58. Many of the ternary ahimimdes forming the ThMnu and 

NaZnia structure types have vec*s between 2 and 2.6. This ch^^ter will inchide a careflil 

examination of both of these structures, the bonding within the two Cu-Al networks, the 

differences in size and symmetry of the po^rfaedra sutioimding the large electropositive 

metal atoms (Le. Ba, La) in each structure, and the electronic structures of representative 

ternary ahmiinides in both structures, using extended Hiickel calculations. These calculations 

were designed to illuminate some of the &ctors mfluencing the fomiation of either of these 

structures for a particular con^sition. 

Ch£^)ter 4: Quaternary Aluminides 

The synthesis of new ternary ahimfniim-rich intermetaOics with alkaline earth and 

rare earth metals as electropositive electron donating atoms was discussed in chapter 2, and 

the role of these metal atoms in directing the formation of either the ThMhi2 or NaZnu 

structure was discussed in chapter 3. With the observation of the ThMhu structure for 

LnCusAl? (Ln = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), and the Na2iii3 

structure for AeCufiAl? (Ae = Ba, Sr, Eu, La), the synthesis of quaternary systems of mixed 

cations was carried out to e}q>k)re whether the products would be a mixture of two different 

phases, or a single phase with mixed cations. Quaternary reactions of alkaline earth and rare 

earth silver aluminides were also carried out. AeAgs.sAl7.5 (Ae = Ba, Sr) are isostructural 

with BaCusAlg, but EuAgsAU forms the BaGlu structure, and La2AgxAli7.x systems either 

form the TlfcZni? or Th2Mi7 structure 

Chs^terS: Ternary rare earth - gold - aluminides forming structural variants of BaAJU 

A series of rare earth-gokl-aluminides has been investigated, yieldmg insights into the 

importance of vec and atomic size as &ctors which influence the formation of various BaAU 

structural derivatives. For the larger rare earth atoms (La...Eu), the ternary gold conqwunds 
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LnAuAls (Ln = La, Sm, Eu) fi)im a variant of BaAU. The smaller rare earth atoms 

(SnL..Yb), form the new con^unds, Ln3Au2Al9 (Ln = Sm, Gd, Tb, Dy, Yb), v^ch 

crystallize in the a - LasAln structure type, another variant of BaAU. Electronic structure 

calculations were used to investigate the arrangements of Au and A1 atoms within the 

frameworks of these structures. There is an energetic preference for heteronuclear Au - A1 

contacts, rather than homonuclear A1 - A1 or Au - Au contacts within these structures. The 

indications this has on the phase widths of these con^unds, and the in r̂tance of the \ec 

was examined. 

Chapter 6: Structure sorting vec using second moment scaling 

In ch£q)ters 3 and 5, extended H^kel calculations were used extensively to 

investigate the electronic structures of several of these aluminides. These calculations are a 

powerfiil tool for con:q)aring differences in overl£  ̂populations, MuQiken populations, Fermi 

energies and total energies for different arrangements of atoms within a given structure. 

However, one weakness of the HQckel calculations is their energetic bias toward structures 

in ^^^h the atoms are more highfy coordinated. For this reason, without very careM 

treatment, it is difficuh (if not inqwssible) to use the calculated total energies from a Huckel 

program as a basis for comparing the relative stability of similar conqMunds which form 

different structures. In recent years the method of moments, and in particular second 

moment scaling isms\ has been used successfiilty to minimize the effects of this bias in the 

Htlckel total energies, and to allow for more accurate con^arisons.̂ '̂ Second moment 

scaling, which will be discussed in chafer 6, was used to investigate the relationship 

between the formation of temaiy aluminides in various structure types within narrow ranges 

of \ec between 0 and 4. While the number of structure types to consider could potentially 

be very large, the structure types selected were the following: NaZnis, ThMn ,̂ BaCdn, 

Th2>ni7, Th22iii7, CaCus, MoAlu, SrCo2Al9, K4Si23, BaAl* and a - LasAlu, because all of 

these structure Q'pes (except MoAlu) have been encountered in my synthetic work. In many 

cases the calculated and observed ranges of vec were similar. 
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Chester 7: The synthesis and structure of ternary ahmmides forming the BaCdn, ErZns, 
Thz^^n and ThsZni? structures 

The synthesis and structural characterization of several new ternary intermetallics 

forming variants of the BaCdu, ErZns, Th2Nii7 and Th2Zni7 structures are reported. 

LnAgsAle (Ln = La and Eu) form the tetragonal BaCdn structure, in A^ch the silver and 

ahmunum atoms build a closefy packed network around the rare-earth cations. GdsAgioAls 

forms a ternary derivative of the ErZc  ̂structure. 

Both Tl^Nii? and ThjZnn are variations of the CaCus structure, in i^ch some of the 

cationic positions have been replaced by pairs of transition metal atoms. The ThaZni? (R3 m) 

and Th2Nii7 (PSs/mrac) structures are closefy related and most easily described as two 

different arrangements of dimers and cations. There are many rare earth - silver - ahiminum 

conqraunds reported in both of these two structures, with the ahiminun>rich conqwimds 

(Le. Ln2Ag7Alio) forming the Tl^Nin structure, and the silver-rich systems (Le. I^AggAlg) 

forming the ThaZnn structure.̂ '̂' However, there has not been a systematic investigation 

of the ternary con^rasition and structure type relationship. Using both synthesis and 

electronic structure calculations, a careful investigation of a series of La2AgxAli7-x was 

carried out to investigate the &ctors ̂ xiuch drive the fonnation of both these structures. 

Chapter 8: AeAutAle and AePd4Al9 (Ae = Ba, Sr, Eu, La): tetragonal variants of BaCusAls 

AeAusAlg and AePd4Al9 (Ae - Ba, Sr, Eu) fomi tetragonal variants of the NaZnn 

structure. These cooqraunds have presented crystallographic challenges due to the poor 

quality of the majority of single ciystals. However, based on the best refinements of the 

single crystal data, and the powder diffraction evidence, these new structures will be 

presented. 



www.manaraa.com

11 

CHAPTER 2 

THE SYNTHESIS AND CHARACTERIZATION OF TERNARY 
TRIEUDES FORMING A TERNARY VARIANT OF THE 

NaZnis STRUCTURE 

Introduction 

In order to e3q)lore the connection between vec and structure type for the 

conqwunds >^ch lie between the Hume-Rothery phases (vec < 2) and the 7.int1 phases (vec 

> 4), we have focused on the synthesis, characterization and electronic structure of new 

temaiy aluminum-rich intermetallics with 2 < vec <4. binary and ternary con^unds 

in \^ch a group 13 metal (Al, Ga, In, TQ is a major conqwnent have vec near 3. While 

many of the intermetallics involving the trielide metals are not easily classified by any set of 

sin:q)le counting rules, this has not discouraged extensive synthetic efforts and structural 

characterization of binary and ternary phases containing aluminum, gallium and indTiim, 

many of \̂ iuch have vec near three. Pearson's Handbook of Crystallogrcq)hic Data for 

Intermetallic Phases contains many trielide phases in a mulitiude of structure types such as: 

BaAl4, K4S ,̂ WA1i2, SrCozAfc, CaCus, TlfeNin, Th2Zni7, Bal^n, Th6Mn23, N^^Cu2, 

MgZn2, and ThMhia.  ̂I encoimtered many of these structure types in my synthetic 

e?q)lorations of temaiy aluminides, and many of them are subjects of further discussions in 

this thesis. The largest group of ternary ahiminides reported in Pearson's Handbook of 

Crystdlographic Data for Intermetallic Phase^^  ̂forming a single structure type are those 

adopting the ThMhu structure (122 compounds). Many temaiy rare earth (Ln), transition 

metal (N  ̂alumimdes with the general formula LnMcAlu-x (where 4 < x < 6; Ln = Y, Ce -

Lu, Th, U; M = Cr, Mh, Fe, Cu), have been characterized in this tetragonal variant of 

CaCus.̂ ^"^""^ '̂ This body-centered tetragonal structure contains a ^^jM^Alij-x]"" network, 

surrounding the Ln atoms by 20-vertex pofyhedra. This ThMhij structure and the 

LnCuxAli2.x (4 < X < 6) conqwunds will be discussed in detail in chapter 3. These rare-earth-

copper-ahmunum ternaries have vec's between 2 and 2.6, and therefore M well within the 

vec region of interest. 
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We began with temaiy systems in wliich the three con^nents were a blend of both 

Zintl and Hume-Rothery phases, including an electropositive alkaline earth metal, a late 

transition metal and a trielide metal (Al, Ga, In). The first ternary characterized was 

BaCusAlg, >^ch forms the NaZnis structure type, in \^ch the Ba atoms are surrounded by 

a network of intox^nnected, centered icosahedra, conq)osed of copper and ahmiinum 

atoms. Several MCuxAIis-x (M = Ca, Sr, La, Ce, Pr, Nd, Sm, Eu; 5 < x < 7) con^unds 

have been reported forming the NaZnu structure.̂ '-^**^"^ '̂ To our knowledge, however, a 

systematic examination of these conqraunds, including their con]^sitions, phase widths, 

atomic distributions, and electronic structures has not been reported. In this paper we report 

the results of our investigation of the conqwsition, structure, phase width and electronic 

structure ofmanytemaryahiminides which form the NaZnis structure type. 

Experimental 

Synthesis 

The synthesis of the ternary ahuninide phases was carried out in a water-cooled, 

argon filled arc melting furnace. The samples were prepared from the elements in a glove 

box using foil as a wn^ing ̂ ch served as both a convenient way to keep the smaller 

pieces of metal or powder contained withhi the san:;>le for arc melting, and to keep the 

more reactive metals protected fix)m air e]qx>sure as the san^les were quickfy transferred 

from the box into the arc melting furnace chamber. The elemental sources were as follows, 

Ba and Sr rod (JohnsonrMatthey, 99.5%), Cu (Johnson-Matth ,̂ 99.5%) and Ag (Alfe, 

99.9%) powders, Au wire (Aesar, 99.95%), Ga ingots (Alfe, 99.99%), In ingots (Alfe, 

99.0%), Sn shot (Balzers, 99.99%), rare earth ingots (Y, La, Ce, Sm, Eu, Gd, Tb, Dy, Ho, 

Er, Yb) (Materials Preparation Center 99.0%) and Al foil Some of the reactions, 

particularly those with gallium and indium, were carried out in tube furnaces with the 

reactants loaded into AI2O3 crucibles v^ch were then sealed in evacuated fused silica 

jackets. But, most of the sanq)les were melted and often remehed several times in the arc 

melting ftimace with a titanium or zirconium getter to fiirther purify the atmosphere. The arc 
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melted buttons ^were silvery ̂ vith a dulled luster on the outer sur&ce, but shiny sihrer and 

metallic looking in the inside. The buttons were easify broken into smaller pieces or ground 

into fine black powders for Guinier X-ray powder patterns which were taken immediate  ̂

after arc melting to identify crystallme phases in the products. Sauries were wrs^tped in Nb 

foil (0.025 mm, AI&, 99.8%) and sealed in evacuated fiised siHca tubes for annealing at 

ten:q)eratures ranging fix)m 600 - 1100°C depending on the conqrasitions of the products. 

The Guinier X-ray powder patterns for the annealed products contained shazx)er lines than 

the initial post arc melting patterns, indicating inq)roved ciystallinity. However, for most of 

the products the positions and relative intensities of the lines did not change, indicating no 

change in the structure upon annealing. Powder patterns observed from products ground and 

bandied exchisively in the glove box were identical to those of products handled in the air. 

The sur&ces e^qrased are assumed to be passivated instantaneous ,̂ and oxidation of the 

bulk materials is not observed. 

Single crystal data were collected on crystals selected from both pre-annealed and 

post-annealed products. Single crystals were generally loaded in air on glass fibers in epoTQ ,̂ 

but many crystals were loaded in capillaries in the glove box. All of the single crystals chosen 

bad an irregular sha  ̂and a shiny silver metallic ^)pearance. After a satis&ctory single 

crystal sohition revealed the composition of the crystal, that stoichiometry was loaded for 

another reaction m an atten^t to prepare single phase material for plQ^sical property 

measurements. 

Structure Determination 

Structural anafysis of the products was carried out using both powder and single 

crystal X-ray difBraction. An Enraf-Nonius Guinier camera (Cu Kai with Si internal 

standard) was used for powder diffraction analysis and lattice parameters were refined using 

measured line positions from the films. Single crystal data were collected on a Siemens P4 

difSractometer at 298 ± 2 K (Mo Kai). Peaks located from a rotation photo were used to 

obtain a unit cell whose orientation matrix was refined using a groiq) of25 -50 reflections in 
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the 20 range 10® to 30°. Most data sets were collected with 20mix either 45®, 50® or 60®, 

the latter was used to refine mixed occupancies on a single site more precise .̂ Lorentz and 

polarization corrections were ̂ plied to the data sets as well as a semi-enq)irical absorption 

coirection based on collected azimuthal scans. The structures were solved by direct 

methods and refinement calculations were performed on a Digital Equ^ment Nficro VAX 

3100 conq)uter using the SHELXIL-PLUS programs.̂ '*^  ̂Note: the refinement was on for 

all reflections except for those with very negative or those flagged the user for 

potential systematic errors. Weighted R-&ctors (wR) and all goodnesses of fit (S) are 

based on F ,̂ conventional R-&ctors (Rl) are based on F, with F set to zero for negative F .̂ 

The observed criterion of F  ̂ > 2sigma(F^) is used onl  ̂for calculating Rector snd is not 

relevant to the choice of reflections for refinement. R-£ictors based on F  ̂ are statistical  ̂

about twice as large as those based on F, and R- &ctors based on all data will be even larger. 
[431 

Physical Measurements 

Magnetic suscq)tibility tubes were prepared in the glove box by grinding 20 - 40 mg 

of product and loading it into a fiised silica tube packed tightfy between two rods, or by 

gluing a small piece of product inside a plastic straw. Magnetic susceptibility measurements 

were performed using a SQUID magnetometer, finm 6 - 300K at a field strength of 3 Tesla. 

Sanq)les for X-ray photoelectron spectroscopy (XPS) were prepared and mounted in 

the glove box. XPS measurements of core binding energies and san:q)le sur&ce conqwsition 

were carried out on PHI 5500 Multi-Technique Sur&ce Analysis Equqnnent. This technique 

provides binding energies of electrons ejected fix)m the atoms in the san^le, and fix>m those 

energies one gains information about the chemical environment of the elements in the 

structure. The sur&ce of the material can be anafyzed as received without any surfoce 

cleaning, in which case the material is always covered with an ahiminum-rich oxide layer. 

The sur£tce can be etched with a beam of electrons for a period of several minutes which 

efifectivefy cleans the surfiice and exposes "fi%sh" san:q)le which can be anafyzed and will 
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reflect more accurate  ̂the con^sMon of the "bulk" material This con^sitional anafysis 

has been carried out on many of these ternary ahimiDidesanq)]es. 

Samples for scanning electron microscopy (SEM) were mounted in air on carbon 

paste to provide good contact with the san^le holder sur&ce and to avoid charging. The 

SEM and in situ energy diq)ersive spectroscopy (EDS) con^sitional anafysis were carried 

out in a JEOL 6100 Scanning Electron Nficroscope.̂ '*^  ̂ Microscopy was carried out on 

powder sanqiles, crystals and larger pieces of arc melted buttons from both pre- and post-

annealed products. Using EDS the elemental con:q)onents of each san^le can be identified 

and a qualitative con:^)osition can be ana '̂zed. )\^out rigorous analysis of standards, 

however, accurate conq)ositions fix>m EDS are not easily acquired. For some products 

which contained mult^le crystalline phases, as identified by powder X-ray anafysis, regions 

of different phases were seen and their conqwsitions confirmed EDS. For example, 

observation of a cleaved sur&ce of an arc melted button of EuCusAlrSn, showed large 

smooth looking regions of the sample \^ch only ana^rzed as containing Eu, Cu and Al, as 

well as some smaller rougher areas v^ch contained Eu, Cu, Al and Sn. The X-ray powder 

pattern confirms the presence of EuCusAl?, as well as elemental Sn. 

Theoretical Calculations 

The electronic structures of many ternary aluminides were evaluated ii«nng the tight-

binding approximation in the extended Huckel calculations, and these results will be 

presented in detail in ch^ter 3. 

Results 

BaCusAk 

The new ternary conqmimd BaCusAls was first identified in the product of reaction 

(1) A^idch was characterized using both powder and single crystal X-ray diffraction. 

Ba + 2Cu + 9A1 -)• BaCusAU + BaAU + Al (1) 
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A single ciystal was chosen from the reaction products of (1) and the structure of the new 

ternary con^imd BaCusAlg was solved; see Table 2.1 for relevant collection parameters 

and refinonent results. BaCusAlg forms a ternary variant of the NaZni3 structure, which is a 

3-dimensioaal network of Cu-centered icosahedra enclosing the Ba atoms in 24-vertex snub 

cubes. Table 2.2 contains the positional coordinates, isotropic di^lacement parameters, and 

site occiq)ancies for BaCusAlg. 

Structure Description 

BaCusAls forms a ternary variant of the NaZnu structure in which each large &ce 

centered cubic unit cell contains 8 formula units, totaling 112 atoms. The structure can be 

described as a CsCl packing of Ba atoms and Cul-centered icosahedra as shown in Figure 

2.1 (a). The structure contains three positions ^^iiich are summarized in Table 2.2 for 

BaCusjAl?.?, and a sHce of the structure is shown in Figure 2.1(b). The Ba atoms (8a, large 

gray circles) are surrounded by 24-vertex snub cubes, and the Cul atoms (8b, small black 

circles) are surrounded by icosahedra, conq)osed of four Cu2 and eight A1 atoms (96i, small 

open circles). The Cul-centered icosahedra are interconnected by tetracapped tetrahedra 

(Stella quadrangula) such that th  ̂are arranged in an alternate pattern with the icosahedra 

bisecting each cell edge (1/2,0,0) rotated 90° fix)m the icosahedra on the comers (0,0,0) and 

the center (1/2, 1/2, 1/2) of the unit ceU. There are three poljliedra which are building 

blocks from \^ch the entire structure can be described: the snub cube, the stuffed 

icosahedron, and the steDa quadrangula, see Figure 2.2 (a), (b) and (c). The snub cubes are 

nearly spherical po^iedra around each Ba atom ^n^se site symmetry is O (432). The 

distance from the Ba atoms to each of the 24 atoms of the snub cube is 3.576(1) A. The 

icosahedra are also nearty spherical pol^iedra, centered by Cul atoms whose site symmetry 

isTh(m3). The distance from the central Cul atom (0,0,0) to each of the 12 atoms of the 

icosahedron is 2.572(1) A. The distances between A1 and Cu2 atoms ^ch make the 

icosahedral network range fixjm 2.637(1) - 2.845(1) A, see Figure 2.2. There are two 

different distances within a single icosahedron, 6 long distances (2.845(1) A) and 24 shorter 

distances (2.668 (1) A), see Figure 2.2 (b). The Stella quadrangula also contain interactions 
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at two distances, 2.637(1) A, and 2.771(1) A, see Figure 2.2 (c). While this is a densety 

packed structure, it cannot be considered a true Frank-Kasper phase because the snub cubes 

contain 4 membered rings, and not every po^edron can be described the packing of 

tetrahedra. 

Table 2.1: A summary of collection parameters and structure refinraiient results for 
BaCus.3Al7.7. 

Space Groiqp 
Unit Cell Dimensions 
Volume 
Z 
Density (calc.) 
Crystal Size (mm) 
Absorption Coef5cient 

Radiation 
Tenq)erature 0  ̂
29niix 
Scan Range (o) 
Scan Speed 
Index Ranges 

Reflections Collected 
Independent Reflections 
Observed Reflections 
I^dJ Max. Transmission 

Weighting Schrane 
Parameters Refined 
R Indices (wR2)[Fo ̂  4g (FO)] • 
R Indices (Rl) (all data) *• 
Goo  ̂ All Data t 
Data-to-Parameter Ratio 
Largest Difference Peak 
Largest Difference Hole 

Fm3c (no. 226) 
a =12.205(4) A 
1815.8(10) A  ̂
8 
4.977 Mg/m  ̂
0.50 X 0.30 X 0.20 
17.064 mm'̂  

MoKa(A, = 0.71073 A) 
298(1) 
60.0« 
0.60" 
Variable; 1.0 to 10.0®/min. in© 
0 /̂i<12,-16< k<\6, 
-16  ̂ /<-16 
8415 
117 (R« = 0.0532) 
115 (Fo>4.0<t(FO)) 

0.3495 / 0.9006 

W-'=O^(F) + 0.0015F^ 
14 
R = 0.0186, wR = 0.0456 
R = 0.0188, wR = 0.0456 
1.158 
15.1:1 
0.858 e/A-  ̂
-1.244 6/A-  ̂

• «i!2 = [2[w(F2 

••Rl=SllF,l-lF.II/2lF,l 
t GooF = S = [Z;[wa? -F2)2]/(n-p)]'« 

(wh  ̂n = # of reflections, p = total # of parameters refined) 
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(a) (b) 

Figure 2.1(a) The CsCl packing of Ba atoms (gray circles) and Cul-centered icosahedra (open circles), (b) A slice of the 
BaCusAU structure. The large gray circles are the Ba atoms (8a), the smaller black circles are the Cul atoms (8b), and the 
small open circles are the Cu2/Al atoms (96i). 
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(a) 

Ba centerd snub cube 

Ba - large gray circle 
Qi2/Al - small open circles 

symmetry of the Ba site = O (432) 

Distance from Ba - Cu2/Al = 3.576 (1) A 

Cu centered icosahedron 

Cul black circle, Cu2/Al open circles 

symmetry of the Cul site = Th (m3) 

Distance from Cul - Cu2/Al = 2.572(1) A 

Distances from Cu2/Al - Cu2/Al 
(1)2.845(1) A (x6) 
(2) 2.668(1) A (x24) 

Stella QiiaHranoiila 

(between two 
icosahedra) 

Cu2/Al-Cu2/Al 
(1)2.637(1) A (X 4) 
(2) 2.711(1) A (X 4) 

(c) 

Figure 2.2 (a) The 24-vertex po^liedron aroimd each Ba atom (gray circle), with a distance 
of 3.576(1) A to each Cu2/Al atom (open circles), (b) A Cu-centered (black circle) 
icosahedron, with 12 equivalent distances of2.572(1) A to the Cu2/Al atoms (open 
circles), (c) Two icosahedra are connected by a stelk quadrangula, (tetracapped 
tetrabwlron) with two distances of2.637(1) A and 2.711(1) A. 



www.manaraa.com

20 

Table 2.2: The positional coordinates and equivaleiit isotropic displacement coefScients for 
BaCusjAlj.?. 

Atom Site X y z Ueq Site Occ. 

Ba 8a 0.25 0.25 0.25 0.0072(5) 1.0 
Cul 8b 0 0 0 0.0148(5) 1.0 
A1 96i 0.1166(1) 0.1755(1) 0.0 0.0139(4) 0.643(6) 
Cu2 96i 0.1166(1) 0.1755(1) 0.0 0.0139(4) 0.357(6) 

Magnetic Susceptibility Measurements 

The measured magnetic suseptibilities are shown in Figures 2.3 and 2.4 for 

BaCusAU, and EUC116.5AI6.5 respective .̂ After a diamagnetic core correction was ^plied, 

BaCusAlg showed tenqjerature independent paramagnetism above lOOK (Xtip = 1.0 x 10"  ̂

emu/mol), and EuCu6.sA]ti.s was paramagnetk: with an effective moment of 7.82(2) Bohr 

magnetons (T > 80K), consistent with Eu^"*" (f, 7.94 B.M.). 

After the synthesis and characterization of BaCusAlg, several questions guided our 

forther examination of this new intermetallic material; (1) \^1)at is the phase width of this 

con9)ound? (2) can the phase width be e^qplained using electronic structure calculations to 

examine the bonding within the copper-ahmunum framework? and (3) i^iiat other ternary 

(and quatemaiy) combinations of metals might form isostructural con^imds? In the 

foUowing sections, these three questions will be addressed. 

Phase Width: Synthetic Investigation 

In the BaCuxAli3.x system, a careful investigation of the phase width was carried out 

both synthetically and theoretically. Table 2.3 contains the results of efforts to synthesize 

single phase products varying the reaction conqx)sition for BaCuxAlu-x from 0 < x < 13. 

In all cases except x = 4,5, and 6, muh^le phases were observed in the Guinier X-ray 
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Figure 2.3: The magnetic susceptibility curve for BaCusAIg from 6 to 300 K at 3 Tesla. BaCusAlg has a very small paramagnetic 

signal, which is temperature independent (Pauli paramagnetism) above lOOK ( t̂ip = 1.0 X 10"  ̂emu/mol). 
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Figure 2.4: The magnetic susceptibility curve for EuCua sAle s from 6 to 300 K at 3 Tesla. EuCue.sAU.s has a large paramagnetic 
signal with an effective magnetic moment of 7.82(2) Bohr magnetons (T > 80K), consistent with (f' 7.94 Hb). 
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powder patterns. BaCun is reported to form the NaZnu structure,̂  ̂ although we could not 

confirm this. 

In order to mvestigate the variation in conqwsition within a single arc melted button, 

several single crystals taken fiom a single reaction product were characterized. 

annealed in Mb finl 
arc melted 800° C, 1 montii 

Ba + 5Cu + 8Al  ̂ BaCujAlg + trace A1  ̂ BaCusAlg (2) 

Several crystals were loaded from the annealed product of reaction (2), and three single 

crystal X-ray data sets were collected and refined with conqmsitions of BaCus.40(2)Al7.60(2)> 

BaCu5.48(3)Al7.52(3), and BaCus.52a)Al7.48(2)- Table 2.4 summarizes the results of these three 

refinements. These results siq)port two in^rtant conclusions: (1) these ternary phases 

BaCuxAl:3-x have a feirfy narrow phase width between 4  ̂x < 6, and (2) the con^sition 

within a certain product button is quite homogeneous. 

Phase Width: Theoretical Investigation 

These synthetic results lead us to examine how the electronic structure contributes to 

this narrow phase width. We performed a series of calculations in \^ch the Cu : A1 ratio 

was varied from BaCuu, BaCui2AL..BaCuAli2, BaAlia, and considered the total densities of 

states, Fermi energies, and crystal orbital overlap populations for the bonding in the 

icosahedral network. The con^)lete results of our investigation of the electronic structure of 

BaCusM vnll be presented in chapter 3. It is important to mention that these calculations 

have been invaluable tools for our exploration and understanding of mazQ  ̂aspects of these 

ternary aluminides. In particular, the electronic structure calculations have aided our 

examination of the arrangement of copper and aluminum atoms in the icosahedral network, 

as well as the observed phase width of BaCuxAli3.x (where 4 < x < 6). 
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Table 2.3: The synthetic investigation of the phase width of BaCuxAlu-x. 

Reaction Stoichiometry Heating Method Reaction Products 

BaCuis 
BaCugAU 
BaCueAl; 
BaCusAlg 
BaCu4Al9 
BaCusAlio 
BaCuAlu 
BaAli3 

arc welder 
arc welder 
furnace and arc welder 
furnace and arc welder 
arc welder 
furnace 
furnace and arc welder 
arc welder 

BaCuu 
BaCu6Al7 + Cu 
BaCueAl? 
BaCusAlg 
BaQuAl? 
BaCusAls + CUAI2 + Ai 
BaM + Al + trace BaCusM 
BaM + Al 

Substitutional Derivatives of BcK^usAh 

The isostructural ternary trielide-rich phases A\tcTi3-x (A = Ba, Sr, La, El  ̂M = Cu, 

Ag; T = Al, Ga, In; 5 < x < 6) were synthesized and characterized using the sanv> methods 

described earlier. Table 2.5 contains a sununaiy of the reactant con:q)ositions, the heating 

method(s) and the reaction products identified by powder X-ray dif&action. Single crystal X-

ray anafysis was carried out for those conqwunds marked with a (*). Table 2.6 contains a 

summary of single crystal solutions for various ternary aluminide phases forming the NaZnu 

structure type. Using measured lines fix)m the Guinier X-ray powder patterns, the lattice 

parameters for these con::Q)ounds were refined, and are reported in Table 2.7. While the 

synthetic goal of each reaction was to prepare single phase product, this was not possible in 

many cases (particular  ̂for the reactions with Ga and In). Therefore the exact compositions 

for those phases in Table 2.6 marked with a (*) are not knowa In order to establish the 

relationsh  ̂ between the observed lattice parameters arKl the refined coix9X)sition of the 

copper ahmsinum network, the refined lattice parameters from powder data, were plotted 

against the refined con^sitions firom the single crystal data. Figure 2.5 contains three 

gr^hs of the a lattice parameter vs. conqwstion for the three ^^ems; BaCuxAlu-x, 

LaCi^Aln-x and EuCuxAli3-x- The a lattice parameter varies systematically with MCuxAli3.x 

(M = Ba, Eu, La) conqx)sidon, decreasmg as the Al con^)osition decreases. 
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Table 2.4: An abbreviated simnoary of refinenaent details for three single crystals taken from 

a single annealed product 

Refined Chemical 
Formula (E) BaCus.4oAl7.(o (b) BaCu5.48Al7.s2 (c) BaCUs.52Al7.48 

Space Group Fm3c Fm3c Fm3c 
Unit Cell Dimensions a =12.167(1) A 12.169(1) A 12.168(1) A 
Unit Cell Volume 1801.2 (3)A^ 1802.0(3) A  ̂ 1801.6 (3) A  ̂
Reflections Collected 340 342 342 
Independant Reflections 63 63 63 
Observed Reflections 59(Fo>2a(Fo)) 59 59 
R, wR (Fo > 4.0 a (Fo)) 0.0181, 0.0264 0.0237,0.0493 0.0162, 0.0288 
R,wR (alldata) 0.0222,0.0281 0.0251,0.0495 0.0179,0.0290 
GooF, All Data 0.985 1.300 0.997 

Atom Site X y z Ueq Site Occ. 

(a) BaCus.40Al7.60 
Ba 8a 0.25 0.25 0.25 0.0082(6) 1.0 
Cul 8b 0 0 0 0.0113(11) 0.86(2) 
All 8b 0 0 0 0.0113(11) 0.14(2) 
A12 96i 0.1169(1) 0.1755(1) 0.0 0.0148(7) 0.621(7) 
Cu2 96i 0.1169(1) 0.1755(1) 0.0 0.0148(7) 0.379(7) 

(b) BaCu5.48Al7.52 

Ba 8a 0.25 0.25 0.25 0.0061(9) 1.0 
Cul 8b 0 0 0 0.014 (2) 0.92(3) 
All 8b 0 0 0 0.014 (2) 0.08(3) 
A12 96i 0,1169(2) 0.1757(2) 0.0 0.0123(10) 0.621(10) 
Cu2 96i 0.1169(2) 0.1757(2) 0.0 0.0123(10) 0.379(10) 

(c) BaCU5.52Al7.48 

Ba 8a 0.25 0.25 0.25 0.0077(6) 1.0 
Cul 8b 0 0 0 0.0107(11) 0.85(2) 
All 8b 0 0 0 0.0107(11) 0.15(2) 
A12 96i 0.1166(1) 0.1754(1) 0.0 0.0148(6) 0.612(7) 
Cu2 96i 0.1166(1) 0.1754(1) 0.0 0.0148(6) 0.388(7) 
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Table 2.5: Reaction composition and product identification for a those ternaries adopting the BaCusAlg structure. See 
Appendix 1 for a complete list of reactions. 

Reaction Stoichlometry Heating Method Reaction Products (by powder x-ray diilraction) 

BaAli3 arc welder BaAlt + A1 
BaCuAli2 arc welder BaAli + A1 + BaCusAU trace 
BaCujAlio arc welder BaCusAls + CuAlz + A1 
BaCu4Al9 arc welder BaCu4Al9 
BaCusAIg furnace (1120°C) & arc welder BaCus Alg • 
BaCufiAly furnace (1125°C) & arc welder BaCufiAl? * 
BaCu9Al4 arc welder BaCufiAl? + Cu 
BaCuis arc welder BaCuij 
BaCujOas furnace (600 ®C, 950 ®C) BaCu^Ga? + Ga + CuGaa 
BaCusIng furnace (600 ®C, 950 °C) BaCueIn? + In 

BaAgaAlio arc welder BaAgsAU + A1 
BaAgsAls arc welder BaAgs Als * + trace A1 + trace BaAU 
BaAgssAly.s arc welder BaAg5.sAl7.s * 
BaAg7Ga6 fiimace (1000 °C) BaAgxGaij-x + BaGa4 
BaAgfilny furnace (1000 ®C) BaAgxInn-x + In 

SrCujAIg arc welder SrCue AI7 • + CuAh 
SrCudAly arc welder SrCu^Aly • 
SrCuyAlfi arc welder SrCuyAle 
SrAgsAls arc welder SrAgfiAly + A1 
SrAgs.sM.s arc welder SrAg5.5Al7,5 

EuCu^Al/ arc welder EuCu  ̂AI7 * + CuAlz 
LaCusAIg fiimace (1125 "C) LaCu6Al7 * + LaAU 
LaCufiAl? arc welder LaCu6Al7 

^single crystal collection and solution 
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Table 2.6: A summary of single crystal refinements on various ternary aluminide compounds forming the NaZni3 structure. 

Refined Composition a (A) #refls. 
collected 

# uniq /obsvd • 
reflections 

20ttuw 
(deforces) 

R, wR R, wR 
all data 

1. BaCu5.27Al7.73 12.205 (4) 8415 117/115 60.0 0.0186,0.0452 0.0188,0.0452 

2. BaCus.66Al7.33 12.134(1) 560 128/110 60.0 0.0290,0.0710 0.0401,0.0755 

3. BaCu<i.iA]6.9 12.061 (1) 164 55/45 50.0 0.0143,0.0300 0.0313,0.0394 

4. BaCus.4tAl7.60 12.167(1) 340 63/59 45.0 0.0181,0.0264 0.0222,0.0281 

5. BaCU5,4gAl7.52 12.169(1) 342 63/59 45.0 0.0237,0.0493 0.0251, 0.0495 
6. BaCuj.s2Al7.48 12.168(1) 342 63/59 45.0 0.0162, 0.0288 0.0179,0.0290 
7. BaCu6.09Al6.91 12.084 (1) 980 82/82 50.0 0.0219,0.0542 0.0219, 0.0542 

8. SrCu6.17Al6.g3 11.980(1) 904 125/111 60.0 0.0315,0.0674 0.0363,0.0688 

9. SrCu6.oAl7.o 11.980(1) 466 110/96 60.0 0.0442,0.0927 0.0525,0.0979 

10. LaCus.9Al7.i 11.965 (1) 904 125/113 60.0 0.0170,0.0398 0.0217,0.0416 

11. LaCu6.07Al6.93 11.913(1) 324 61/59 45.0 0.0163,0.0329 0.0178,0.0331 

12. LaCu6.12Al6.88 11.916(1) 324 61/59 45.0 0.0236,0.0563 0.0240,0.0563 

13. LaCu6.iiAl6.89 11.915(1) 427 78/73 50.0 0.0223,0.0420 0.0264,0.0434 

14. EUCU6.4A16.6 11.928(1) 894 124/117 60.0 0.0218, 0.0554 0.0237, 0.0566 
IS. EuCu6.13Al6.87 11.936 (1) 324 61 /59 45.0 0.0204,0.0436 0.0241,0.0470 
16. EuCU5,9sAl7.05 11.940(1) 324 61/59 45.0 0.0165,0.0353 0.0173,0.0355 

17. BaAgs.8Al7.2 12.665(1) 874 93/88 50.0 0.0433,0.0813 0.0490,0.0853 

18. BaAg5,53Al7,47 12.677 (1) 517 93/89 50.0 0.0222,0.0501 0.0239,0.0506 

• observed means (Fo ̂  2a (Fo)) 
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Figure 2.5: The variation of the lattice parameters for the three conqmunds BaCuxAli3.x, 
EuCuxA1i3-x and LaCuxAlis-x. The conqxisition, as refined by single crystal data, is 
plotted versus the measured and refined lattice parameters, with the error bars 
indicating an uncertainty of ± 0.1 in composition, and ± 0.05 A in lattice parameter. 
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Table 2.7; The refined lattice parameters for ternaries fonning the NaZnu structure. For 
those conqwunds marked with a (*), the com^siticn is £^)proximate, because the 
reaction product was not single phase, and a single crystal X-ray structure 
refinranent was not obtained. 

r-nmposTtfon Lattice Parameter A 

BaCu5jCu7.7 12.205(4) 
BaCufiGa? * 12.026(2) 
BaCueIn? * 12.740(4) 
BaAgs.8Al7  ̂ 12.666(3) 
BaAgeGa? • 12.757(3) 
BaAgJn? * 13.442(3) 
SrCu^Al? 11.975(1) 
SrAgsjAlxs * 12.605(6) 
LaCueAl? 11.952(4) 
EuCu<5.5Al6.5 11.977(1) 

Table 2.5 contains a conq>lete list of those phases >^ch were observed forming the 

BaCusAlg structural variant of NaZn .̂ However, it does not inchide all the ternary 

combinations for ^^ch phases other than those forming the NaZnu structure were 

observed. Many ternary reactions with the con^sition AMxTu-x where M = Au, Ni, Pd, Co, 

Fe, Mo, Nb, and T = Si, Sn, Ge, were carried out whose products are all included in a 

coirq)lete reaction list in Appendix 1. Several new ternary gold and palladium ahiminides 

which form a tetragonal variant of BaCusAlg will be presented in chapter 8. The ternary 

phases reported in this ch^ter form a variant of the NaZnn structure, but other structure 

types that were observed and will be discussed in later cheers include; ThN&iu (I4/mmm), 

BaCdn (I4i/amd), Th2Nii7(P63/mmc), Th2Zni7 (R3m), ErZns (P63/mmc), SrCojAlg 

(P6/mmm), and variations of BaAU (I4/mmm).'*'*°  ̂
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Conclusions 

Tbe synthesis and structural characterization of several new ternary derivatives of 

NaZni3: ACusAlg (A = Ba, Sr, Eu, La) and AAg5.5Al7.5 (A = Ba, Sr) was reported. These 

conq)ounds crystallize in the space group Fm3c (No. 226) with lattice paranieters near 12 

A, v^ch vary according to the con^osition of the copper ahuninum network. BaCusAU 

contains a J[Cu(Cu4Al8)]^~ networic of interconnected, Cu-centered icosahedra i^ch 

surround the large Ba atoms in a snub cube. The X-ray diffraction experiments did not 

suggest any ordering of the 4 Cu and 8 A1 atoms within the icosahedra. The 'coloring' of 

these atoms within the network will be discussed in detail in chapter 3. These compounds 

form with a narrow phase width, and electronic structure calculations designed to e}q)lore 

this phase width will be presented in ch^ter 3. 
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CHAPTERS 

ELECTRONIC STRUCTURE CALCULATIONS ON TERNARY 
ALUMINIDE SYSTEMS FORMING THE NaZnn AND ThMn  ̂

STRUCTURES 

Introductioii 

The electronic structures of many ternary atuminides were evaluated using the tight-

binding approximation in the extended HQckel calculations.̂ '*'̂  The extended Htickel method 

is a one-electron calculation of the orbital energies, considering nearest neighbor orbital 

overly. These calculations provide infonnation about the electronic structures of 

con:q)ounds such as the total energies, overly populations, Mulliken populations, as well as 

densities of states (DOS) and crystal orbital overlap population (COOP) curves. For a 

discussion of the extended Hiickel method and some exan:q)les of its ̂ )plication, please see 

references [14,49-51]. 

For the electronic structure calculations of BaCuxAlis., the primitive unit cell 

containing 2 con^lete centered icosahedra was used. In the majority of the calculations no 

specific orbital contributions for the electropositive metal atoms (Ba, Sr, La) were included 

for several reasons. Brief ,̂ in BaCusAls, the barium atoms are surroimded by a 24 vertex 

snub cube of Cu and A1 atoms each at a distance of the 3.576(1) A, and due to this long 

distance, the aflcaiiDe earth atoms were treated as classical cations, donating two electrons 

each to the metallic firamework. As reported in chapter 2, the magnetic susceptibility 

measurements of BaCusAlg and EuCu6Al7 siq)port our treatment of the Ba atoms as closed 

shell Ba^  ̂cations, and the £u atoms as Eu^  ̂ (f) cations, well isolated fiom each other (see 

Figures 2.3 and 2.4). (Note: In these calculations, since no specific orbitals were included for 

the Ba atoms, it is more accurate to describe 'BaCusAlg' as JCCujAlg]^", For sin:q)licity, 

however, BaCusAls will be used.) 

Each calculation considered the precise electron count for the conqx)sition 

(BaCusAlg = 81e", Cu:ll(d'°s^), Al:3, Ba:2) as well as one fewer electron and one extra 
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electron per formula unit for conq)ansoa In each calculation, overly populations and 

MuUiken populations were used to he  ̂examine the bonding and atom distribution within 

the icosahedral framework. Densities of states (DOS) and crystal orbital overlap population 

(COOP) curves were determined by summing over a set of k-points (usualfy 40-60 k-poinls 

in the irreducible wedge of the first Brillouin zone). The parameters of the atomic orbitals 

used in the calculations are given in Table 3.1. 

Table 3.1; The atomic orbital parameters for the extended HQckel calculations.̂  ̂

Element Atomic Orbital Ha (eV) Ci  ̂ C2 

Cu 4s -11.40 2.20 
4p -6.06 2.20 
3d -14.00 5.95 0.5933 2.30 0.5744 

Cu (Charge Iterated Parameters)^® '̂ 
4s -8.45 2.20 
4p -2.98 2.20 
3d -10.94 5.95 0.5933 2.30 0.5744 

A1 3s -12.30 1.37 
3p -6.50 1.36 

Y 5s -8.13 1.74 
5p -5.13 1.70 
4d -8.32 1.56 0.8213 3.55 0.3003 

Y (Charge Iterated Parameters)'"' 
5s -6.78 1.74 
5p -4.28 1.70 
4d -6.50 1.56 0.8213 3.55 0.3003 

Electronic Structure Calculations of BaCuxAli3.x 

Coloring Calculations 

The X-ray e}q)eriment indicated no ordering of the copper and aluminum atoms 

within the icosahedral network. The position (96i) is firactionallb  ̂occiq)ied by 35% Cu and 
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65% Al, \^ch gives an average con^msition of CU4AI8 for each icosahedron. The question 

is, how is this network of interconnected icosahedra 'colored'? Or, how do the copper and 

ahmiinum atoms arrange themselves over the 12 icosahedral sites? For exan:9>le, in the 

hypothetical conqmund BaCuAliz, (or ^[CuAlij]^") ifwe st^ulate Cu-centered icosahedra, 

there is only one 'coloring' of the network, Le Cu atoms occupy the centers of the two 

icosahedra in the primitive cell, and Al atoms occupy all 24 icosahedral positions. If 

however, the conqrasition is BaCusAlio, there is more than one way to 'color' the 

icosahedra. There are 10 unique ways to 'color' a single CutAls icosahedroa The primitive 

unit cell of BaCusAlg contains two con^lete Cu-centered icosahedra, and the complete cell 

contains eight. One can imagine the difficulty this presents in the number of calculations 

which would be necessary in order to consider all of the possible colorings within a single 

unit celL In order to examine the variation in total energy, as a function of different 

'colorings', two series of calculations were carried out for the conq)osition, BaCusAls, (or 

i[Cu(CU4Al,)]^-). 

In the first series of calculations, the total energies of 10 unique 'colorings' of a Cu-

centered, CU4AI8 icosahedron (Cu[Cu4Alg]^"), were con:q)ared, (see Figure 3.1). In Figure 

3.1, the Cul atoms (black circles) occiq)y the centers of the icosahedra, with the four Cu2 

atoms (shaded circles) and eight Al atoms (open circles) arranged around the icosahedra. In 

each of the calculations there were equal numbers of Cul - Cu2 and Cul - Al bonds, 

bcCSuSC all of the icosahedra contained 4 Cu2 and 8 Al atoms. The highest energy 'coloring' 

(1) has the four Cu2 atoms arranged such that two of them have 3 Cu2 - Cu2 contacts (2: 

2.668 A and 1: 2.845 A), and the other two Cu2 atoms have 2 Cu2 - Cu2 contacts (2: 

2.668A). In contrast, the lowest energy 'coloring' (10) has the four Cu2 atoms as &r from 

one another as possible. Two of the Cu2 atoms have a single Cu2 - Cu2 contact (1: 2.845 

A), and the other two Cu2 atoms do not have any Cu2 - Cu2 contacts. The difference in 

total energy between the lowest and highest energy configurations is 0.743 eV. The other 8 

'colorings' (2-9) have a variety of different Cu2 - Cu2 contacts. 
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Total Energy CeV) Total Energy TeY) 

rn -1395.2266 (6) -1395.7157 

(2) -1395.4402 (7) -1395.7664 

(3) -1395.6082 

(4) -1395.6091 

(8) -1395.7870 

(9) -1395.8067 

(5) -1395.6234 
flO  ̂ -1395.9692 

Figure 3.1: The 10 unique 'colorings' of a single Cu-centered QuAIg icosahedron. The 
Cul and Cu2 atoms are the black circles, and the open circles are the A1 atoms. 
The highest energy configuration (1) has the Cu atonas very close together, and the 
lowest energy 'coloring' (10) has the Cu atoms as &r ̂ }art as possible. 
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The primitive unit ceU of BaCusAU contains two con^lete Cul-centered icosahedra 

(26 atoms), so the second series of calculations was canied out on a variety of'colorings' of 

the 24 icosahedral atoms. Figure 3.2 contains the results of calculations on 7 'colorings' of 

the primitive unit cell of BaCusAls, arranged from the highest (1) to the lowest (7) total 

energy arrangement. In each calculation there are eight Cul - Cu2 contacts, and sixteen 

Cul - A1 contacts at 2.572 A. Included in Figure 3.2 are the number of Cu2 - Cu2 contacts 

within the two icosahedra, for each 'coloring'scheme. There are also Cu2 - Cu2 contacts 

generated as this primitive cell is extended m three dimensions to neighboring cells, but just 

considering the Cu2 - Cu2 contacts within the two icosahedra, the fewer the contacts, the 

lower the total energy. Similar to the results of the calculations with a single icosahedron, 

the lower energy configurations have Cu2 atoms well separated fix>m each other, and the 

highest energy 'coloring' (1) has the Cu2 atoms arranged on the stella quadraungula which 

connect the icosahedra. 

From these 'coloring' calculations, it is clear that it is more energetically &vorable 

for the Cu atoms to be well separated &om each other. These calculations suggest that the 

network wants to minimize the number of Cu-Cu interactions, and for this reason, the 

copper atoms must be spread evenly throughout the network, malring the conq)osition of 

each icosahedron near CU4AI8. However, the energy differences between colorings 6-10 in 

Figure 3.1, and colorings 4-7 in Figure 3.2 are small enough to assume that a mixture of 

several or all of these colorings contributes to the disorder observed in the X-ray diffraction 

experiment In chapter 8, BaPd[4Al9 and SrAu^Alfi, two new tetragonal variants of the 

BaCusAls structure will be introduced. Like BaCusAls, these are structures containing 

icosahedra, T^ch are Al-centered in BaPd4Al9, and enq)ty in SrAufiAl .̂ However, unlike 

BaCusAls, the networks of interconnected icosahedra in BaPd4A]9 and SrAugAl  ̂ are not 

complete  ̂disordered. In both compounds some of the icosahedral sites are occ\q>ied by 

onfy Pd (Au) or Al, and some are mixed. The 'coloring' of the network in BaPd4Al9 (see 

Figure 8.2) most closely resembles coloring (6) in Figure 3.1. The en5)ty 'Au^Ale' 
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Total Energy (eV) 

(1) -2105.0488 (highest energy 
coloring) 

17 Cu2 - Cu2 contacts 

(2) -2105.6262 

8 Cu2 - Cu2 contacts 

(3) -2106.0835 

12 Cu2 - Cu2 contacts 

(4) -2106.1726 

6 Cu2 - Cu2 contacts 

(5) -2106.2302 

6 Cu2 - Cii2 contacts 

(6) -2106.5238 

4 Cu2 - Cu2 contacts 

(7) -2106.5704 (lowest energy 
coloring) 

6 Cu2 - Cu2 contacts 

Figure 3.2: Seven 'colorings' of the primitive unit cell of BaCusAlg arranged from highest 
energy 'coloring' (1) to lowest energy 'coloring' (7). The calculated total energies, and 
the number of Cu2 - Cu2 contacts within each arrangement are inchided. 
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icosahedra m SrAu6A]6 (see Figure 8.4) are colored like numbers (8) and (10) in Figure 3.1, 

which are two of the lowest energy 'colorings'. 

Phase Width: Theoretical Investigations 

Since the single crystal X-ray diffiaction e?q)eriments indicated no special ordering of 

the 4Cu and 8A1 atoms on the icosahedral (960 position in BaCusM, we decided to 

investigate the phase width of this con:p>und using both synthesis and electronic structure 

calculations. The details of the synthetic efforts to explore the phase width of BaCuxAlis-x ( 0 

< X < 13) were discussed m chapter 2, and the results suggest that there is a rather narrow 

phase width of BaCuxAlis-x where 4 < x ̂  6. In an effort to understand the con^sition and 

phase width of this ternary ahnninide, electronic structure calculations were performed on a 

series of con^wunds with the NaZnis structure in which the Cu : A1 ratio was varied from 

BaCun, BaCui2AL.3aCuAli2, BaAlu. Total densities of states, Fermi energies, and crystal 

orbital overly populations for the interactions in the icosahedral network were all used to 

evahiate the electronic structure and stability of these conqraunds. BaCuu and BaCuxAli3-x 

(4 < x < 6) are known conqnunds, but the other con:^unds were merefy hypothetical 

conqwsitions forming the BaCusAlg structure for the purpose of the cateulations. With 

respect to the earlier discussion of the 'coloring' of the network, it is inqwrtant to mention 

that the difTerence in the total energies between two unique 'cotorings' of BaCusAls, is much 

smaller than the total energy difference between two different compositions (Le. BaCusAU 

and Ba(}u4A]9). Therefore, in this series of calculations the ^propriate number of copper 

and aluminum atoms were arranged such that a mixture of Cu - Al, Cu - Cu, and A1 - A1 

contacts were generated for the desired con^sition. 

Figure 3.3 contains seven total DOS curves for the conqwunds BaCuis, BaCugAls, 

BaCu^Al?, BaCusAls, BaCu4Al9, BaCu3Alio and BaCuAli2, with the Fermi energies 

represented by the dashed line. The IX)S curves all have a large peak corresponding to the 

Cu d-orbitals between -15.0 and -13.0 eV, which narrows as the Cu concentration 
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Figure 3.3; The DOS courves for the series of BaCuxAlis-x compounds with the Fermi energies marked with the dotted lines. 
The curves are plotted as the density of states vs. energy (eV). Notice the Fermi energies increase, and the Cu d-orbital 
peak at -14.0 eV narrows, as the Al content increases. 
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decreases. Above this peak, the DOS is dispersed aod rather featureless in all of the curves 

except BaCuAli2. In the BaCuAin DOS curve, several peaks begin to appear between -9.0 

and -4.0 eV, ^^ch correspond to areas of high concentration of molecular orbitals in the 

MO diagram of a single Cu-centered AI12 icosahedron, see Figure 3.4. 

Table 3.2 contains the Fermi energies, and the overlap populations for the combined 

interactions betweoi the Cul atoms and the Cu2/Al atoms at 2.572 A. In Table 3.2, the 

largest overl£  ̂ population occurs for BaCusAU, and gradual  ̂ gets smaller for both 

aluminum-rich and copper-rich systems. Figure 3.5 contains the COOP curves for all the 

interactions between the firamework atoms in BaCusAlg, with the Fermi energy highlighted 

with the dotted line at -7.03 eV. Figure 3.6 contains the COOP curves for the 2 mteractions 

(1) Cul - Al/Cu2 (2.572 A), and Cu2/Al - Cu2/Al (combination of all interactions 2.637A, 

2.668A, 2.711 A, 2.845A). In maiQ  ̂of the COOP curves in Figure 3.5, and in both COOP 

curves in Figure 3.6, the Fermi energy crosses at the point ^A^iere the overlap character 

changes from bonding to antibonding, demonstrating the ideal situation that the [CusAlg] '̂ 

stoichiometry represents. 

Table 3.2: A summary of the extended Hdckel results on the series BaCuxAli3.x. 
COOP 

Stoichiometry Fermi Energy (eV) Central Cul - Cu2/Al 

BaCuis -10.62 0.0739 
BaCugAls -8.06 0.1239 
BaCu«Al7 -7.33 0.1348 
BaCu^ALt -7.03 0.1373 
BaCu4Al9 -6.45 0.1303 
BaCujAlio -6.00 0.1285 
BaCuAli2 -4.65 0.1159 
BaAli3 -4.35 -
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BaCuAlig 

(a) 

CuA1i2 icos 

(b) 

Figure 3.4; (a) The DOS curve for BaCuAIi2 with the Fermi energy marked with the 
dotted line at -4.65eV. The features in this curve resemble the high densities of 
molecular orbitals in (b), the molecular orbital diagram of a single Cu-centered 
'CuA1i2' icosahedron. 
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Figure 3.5: All the COOP curves for the copper-aluminum framework interactions in BaCusAlg. (a) Cul - Al, 2.572 A, (b) Cul -
Cu2, 2.572 A, (c) Cu2 - Al, 2.668 A, (d) Al - Al, 2.668 A and 2.711 A, (e) Cu2 - Cu2, 2.668 A, (Q Cu2 - Al, 2.637 A, (g) 
Al -Al, 2.637 A, (h) Cu2 - Cu2,2.637 A, (i) Cu2 - Cu2, Al - Al, Cu2 - Al, 2.845 A. 
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-16.0 

(1) Cul -Cu2/Al 2.572 A (2) all Cu2/Al - Cu2/Al interactions 

Figure 3.6: The COOP curves for the (1) central to sur&ce Cul - Au2/Al interaction in 
the icosahedra (2.572 A), and (2) a combination of all the *sur&ce - sur&ce', 
Cu2/Al - Cu2/Al interactions, in BaCusAlg. The Fermi energy of -7.03 eV is 
marked with a dotted line. 



www.manaraa.com

43 

When the conqwsition is Cu rich (BaCun Ef = -10.62 eV)), the Fermi energy &l]s well 

below this crossover, leaving many bonding interactions unfilled. In the case of A1 rich 

ternaries, (BaCuAliz Ef = -4.65 eV) the Fermi energy Ms above the crossover and many 

antibonding states are filled. For the three con^unds BaOjuAlg, BaCusAlg and BaCu6Al7, 

the Fermi energy &Ds near this crossover, meaning that for these three conqxjunds the 

electron count is such that the bonding within the Cu-Al firamework is maximized, which 

correlates well with the synthesis of single phase products. 

Electronic Structure Calculations of YCuxAl .̂x (ThMai2 structure) 

Many rare earth ternary ahjminides form the ThMn  ̂structure, -wbox similarity in 

conposition and phase width to the alkaline earth and rare earth ternary ahmunides )^ch 

form the NaZnis structure is striking. Table 3.3 includes a list of con^unds which form 

both structure types, and the vec's for each con^und. Figure 3.7 is a structure m£  ̂ of 

ternary aluminides forming the NaZnis and ThMhiz structures. The volume p  ̂formula unit 

of the coni^uods which form the NaZnu is greater than the volume per formula unit of the 

conqmunds adopting the ThMhu structure. 

Table 3.3: A list of conqwunds v^ch form either the NaZnu or ThMhi2 structure. The vec 
is also listed for each conq)ound. 

conqx)und structure vec / network atom reference 

BaCusAls NaZnu 2.38 chapter 2 
SrCueAl? NaZnia 223 chapter 2 
CaCU6.5Al6.5 NaZnis 2.15 [34] 
BaAg5.5Al7.5 NaZni3 2.31 chapter 2 
LaCueAl? NaZnia 2.31 [40] 
EuCu6.sAl6.s NaZnis 2.15 chapter 2 

LnCuxAlu-x (4< x <6) ThMhia 2.25 - 2.58 [31] 
(Ln = Ce, Pr, Nd, Sm, Eu*, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) 

LnM^Als ThNfoi2 1 -1.5 [31] 
(M = Cr, Mh, Fe: Ln = La*, Ce, Pr», Nd, Sm, Gd, Tb, Dy, Ho», Er, Tm, Yb», Lu, Y) 

* indicated some impurities were present in the products 
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Figure 3.7; A structure map separating ternary ahuninides forming the NaZn  ̂aixl TbMnn 
structures by \ec / network atom versus volume per formula unit (A^). The open 
squares are the ahiminides \^ch adopt the ThMnia structure, vMe the x's are the 
ahiminides >^ch form the NaZnn structure. The aluminides ^^ch form the 
NaZnu structure have a larger volume per formula unit than those conqmunds 
forming the ThMhi2 structure. 
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While the similarity in conqx>sitioii between the LnQuAlg phases and the AeCusAlg 

(Ae = Ba, Sr, Eu, La) phases is noteworthy, it may seem strange however that lanthanum 

has not been reported to form LaCuxAli2.x (4 < x < 6), with the ThMni2 structure. In my 

e}q)erimental investigations of the La - Cu - A1 system, I have never observed the formation 

of the ThMhia structure, rather, I have only observed LaCiuAlis-x (x = 5 - 6) which form 

the NaZnis structure. The challenge presented by these synthetic observations, was to 

understand the driving forces behind the formation of either of these structures, for 

conq)ounds which seem so similar. The results of various electronic structure calculations on 

BaCusAls were presented earlier in this ch^ter. Since this carefol examination of the 

BaCuxAli3.x conqmimds yielded some valuable infsights into the 'coloring' of the network, 

and the balance between the Fermi energies and the overly populations w^ch maximizes 

the bonding within the networic, similar calculations were performed on the LnCuxAli2.x (1 < 

X < 11) conqmunds forming the ThMQi2 structure. Despite their similarities in con^sition, 

the LnCu4Al8 (ThMii2) structure is very different fix>m the BaCusAU (NaZnis) structure, and 

as a starting point, a discussion of the LnQuAlg structure is necessary. (Note: In the 

following discussion of the crystal structure and electronic structure, the representative 

con^und YCU4AI8 will be used because Y atomic orbital parameters are inchided in some 

of the later calculations. However, because the reported lattice parameters and positional 

parameters for YCU4AI8 are from powder data, the refined parameters from a single crystal 

solution of HoCusAl? are used during the discussion of the structure and for the extended 

Htickel calculations. Since the parameters of HoCusAl? are very similar to those reported for 

YCu4Alg, this is not at all unreasonable. As confirmation of this, calculations on 

J [CU4 Alg ]^~using the two slight  ̂different geometries (as reported YCU4A18 and as refined 

HoCusAl?) were carried out, and the results were nearfy identical) 

YCmAh Structure Description 

Unlike BaCusAls, in >^ch the network of Cu-centered icosahedra does not exhibit a 

detectable ordering of the 4 copper and 8 ahuninum atoms, the network that surrounds the 
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Y atoms in YCotAls is an ordered arrangement of copper and aluminum atoms. In YCu4Alg 

(YCusAl? and YCusAU are isostructural and will be discussed later) there are three atomic 

positions each of muh^lici  ̂8 (8C Si, and 8j) which form the network surroimding the Y 

atoms, see Table 3.4. 

Table 3.4: The positional parameters for YQ^Alg, fi)iming the Th^fou structure type. 

YCU4A1814/mmm (No. 139) 

fl = 8.705(1) A 
c = 5.128 (1)A 

Atom site sym X y z occ. 

Y 2a 0 0 0 1.0 
Cu 8f 0.25 0.25 0.25 1.0 
All 8i 0.346(4) 0 0 1.0 
A12 8j 0.281(3) 0.5 0 1.0 

In YCU4AI8 copper atoms occupy position 8  ̂and aluminum occupies positions 8i 

and 8j, see Figure 3.8, in \^ch the large open circles are the Y atoms, the dark gray circles 

are the Cu atoms (8Q, the light gray circles are All atoms (8Q, and the small open circles are 

A12 atoms (8j). For a complete list of the bond distances within the YCU4AI8 structure, see 

Table 3.5. In YCukAlg, the Y atoms are surrounded by 20-vertex po^iiedra conqrased of 8 

Cu atoms (Y - Cu = 3.349A), 4 All atoms (Y - All = 3.018A), and 8 AI2 atoms (Y - A12 = 

3.2OOA), see Figure 3.9 (a). The symmetry of the Y position (2a) is 4/mmm (D4h). The 

YCU4AI8 structure contains chains of Cu-atoms running in the c-direction with a Cu-Cu 

distance of2.564 A. Each Cu atom is surrounded by a 12 vertex pc^iiedron, composed of 

2 Y atoms, 2 Cu atoms, and 8 A1 atoms (4:All and 4:A12), see Figure 3.9 (b). The All 

atoms form pair-like units vdiich sit inside 20-vertex polj^iedra, see Figure 3.9 (c). 

Attematefy, the pairs of All atoms are arranged such that they form chains of edge sharing 

tetrahedra running in the c-direction, see Figure 3.8, with the pair-like All-All contacts 

highlighted with thicker bonds. The A12 atoms are surrounded irregular po^edra of 10 

atoms: 2 Y, 4 Cu, 2 All and 2 A12 atoms, see Figure 3.9 (d). 
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o 

Y(2a) 

All (80 

"—01(81) 

A12(8j) 

Figure 3.8: The YCWAU structure with Y atoms (large open circles), Cu atoms (81: dark 
gray circles). All atoms (8i: light gray circles) and A12 atoms (8j: small open 
cirlces). For the conqwund YQuAlg, the distances within the fiamework are listed 
in Table 3.5. 
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(a) the 20-vertex pofybedron around Y 

Y-Cu 3.340 A (x8) 
Y-All 3.017 A (x4) 
Y-A12 3.202A(X8) 

site symmetry of Y = 4/mmm (D4h) 

(b) the 20-vertex polj^iedron around 
the All - All pairs (2.686 A) 

All-Cu 2.665 A (x4) 
All-A]2 2.798 A (x2) 
A11-A12 2.794 A (x2) 
All-All 2.686 A(xl) 
All-All 3.195 A(x4) 

Figure 3.9: (a) and (b) The coordination poljiiedra around the Y atoms (a) and the All -
All 'pairs' (b). Distances firom the central atoms to the neighboring atoms are 
given beside each picture. The large open circles are Y atoms, the smaU open 
circles are A12 atoms, the small dark gray circles are Cu, and the small light gray 
circles are All atoms. 
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(c) the 12-vertex po]}^iedroii around Cu 

2.570 A (x2) 
2.665 A (x4) 
2.545 A (x4) 
3.349 A (x2) 

Cu - Cu 
Cu- All 
Cu- A12 
Cu- Y 

(d) the lO-vertex pobyiiedron around Al2 

A12-A11 2.798 A (x2) 
A12-A11 2.794 A (x2) 
A12-CU 2.545 A (x4) 
A12-A12 2.701 A(X2) 
A]2 -Y 3.200 A (x2) 

Figure 3.9: (c) and (d) The coordination po^liedra around the Cu atoms (c) and the A]2 
atoms (d). The distances from the CCTtral atom to its neighbors are given beside 
each picture. The large open circles are Y atoms, the small open circles are A12 
atoms, the small dark gray circles are Cu, and the small light gray circles are All 
atoms. 
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Table 3.5: Distances between the atoms in YCU4AI8, see Figure 3.8. 

Atoml Atom2 distance A 

Y Cu 3.349(4) 
All 3.018(4) 
A12 3.200(2) 

Cu All 2.663(1) 
A12 2.539(1) 
Cu 2.564(1) 

All All 2.668(7) 
A12 2.792(2) 
A12 2.779(2) 

A12 A12 2.708(4) 

The 'CU4AU' framework in YCU4A18 has the conq)osition CUAI2, and in &ct, bears a 

close resemblance to the CuAla structure itself One way to view the YCiuAlg structure is 

a 'CuAlz - like' structural framework v^ch has been 'intemq)ted' by the addition of the Y 

atoms. Figure 3.10 (a) is the CuAla structure containing a highlighted region ̂ ^ch contains 

small arrows to designate the atoms that shift slight  ̂ in order to open the space in the 

firamework for the Y atoms. A similar area is highlighted in the YCutAls network of Figure 

3.10 (b). 

Extended Huckel Calculations on YCuiAh 

The LnCuxAli2.x conqwunds form the ThMhn structure between x = 4 and 6 (yec = 

2.25 - 2.58). The ordering of Cu and A1 atoms in YCu4A]8 was discussed in detail in the 

previous section, and in YCusAl? and YCueM* the positions 8f and 8i are fiilfy occiq)ied by 

copper and aluminum respective ,̂ and 8j is occupied by both copper and ahmiinum atoms. 

Tl  ̂calculations of YCuxAl .̂x were broken into two groups; (1) the ordering of copper and 

aluminum atoms within theJ[Cu4Alg]  ̂ network, and (2) the mvestigation of the phase 

width of YCU*A1I2-X (0 < X < 12), 
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Figure 3.10: (a) The CuM structure with Cu atoms the gray circles, and A1 atoms the open circles, is related to (b) YCU4AI8, by 
the highlighted sections. In YCU4AI8 (b), the dark gray circles are the Cu atoms, and the light gray and open circles are the 
All and A12 atoms respectively. 
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The Y - Cu, Y - All, and Y - A12 distances of 3.349 A, 3.018 A, and 3.200 A 

respectively, are shorter than the Ba - Cu2/A12 distance of 3.576A in BaCusAlg. But to 

maintain consistenqr between the two series of calculations, the Y atoms were initailfy 

treated as classical cations which donate 3 valence electrons to the metallic framework and 

no specific orbitals were included in the calculations. This is an appropriate time to point 

out however, that the electropositve metal atoms should not be ruled out as an important 

&ctor contributing to the formation of the different structures. Therefore, in several of the 

calculations, q)ecific orbitals were included for the Y atoms. 

The Ordering of Copper and Aluminum in YCu^Ah 

The first calculations performed on the YQjuM structure considered the all 

aluminum or all copper networks; i[Ali2]°~ and itCuij]"". Using MuUiken populations 

for the  ̂[A1i2 ]°" and J [Cu^j ]°~ fiameworks (with various electron counts appropriate for 

a J[Cu4Al8]°" networic) as guides for the atomic ordering in the ternary con^wund, the 

positions with the largest MuUiken populations would be the positions most likely occiq)ied 

by the atoms with the largest electronegativity.̂ ® '̂ The first three cohmms in Table 3.6 

contain the Mulfiken populations of the 3 positions (8C 8i, 8j) for each different electron 

count. There are differences between the MuUiken populations for the 3 sites for the Cu and 

A1 atoms, but the results are not consistent. In the  ̂[Al^  ̂]°~ network, each of the three 

sites has the higher MuOiken population for a different electron coimt. And in the J [Cujj ]°~ 

firamework, the position 8i has the higher Mulliken population at all three electron counts. 

With the electronegativities of Cu and A1 of 1.74 and 1.54 respectively,̂ *'' the Mulliken 

populations indicate that Cu atoms should occiq)y position 8i, which is not observed. The 

second groiq> of Mulliken populations reported in Table 3.6 are those for the same 

iCAliz]"" and JCCuij]"" fiameworks including Y atomic orbitals. The results are very 

similar for both sets of calculations. In Figure 3.11 the Mulliken populations for the three 

sites (8  ̂8i, 8j) are plotted versus various electron counts fix)m 15 to 39 electrons, with and 



www.manaraa.com

53 

without Y atomic oibitals inlcuded. For the lowest 3 electron counts (15, 18, 22), the 

airangemeat of the atoms based on the MuUiken populations does reflect the observed 

structure (with Cu on 8Q. However, as the electron count increases, the MuUiken 

populations on positions 8i and 8j are greater than 8  ̂w^ch is not the observed arrangement 

of atoms. 

T^^out a clear indication of the ordering preference from the MuUiken populations, 

calculations on YCufAlg were carried out with different arrangements of the four copper 

and eight ahuninum atoms. Table 3.7 summarizes the results of three calculations in ^^^h 

the four copper atoms occi^ied each of the 3 (8  ̂8i, 8j) positions. The configuration in 

\^ch the copper atoms occtq>y the 8i site had the lowest total energy, however, this 

position is occiq}ied ^chisivefy A1 atoms in the observed structure. In &ct, of the three 

configurations, the observed arrangement of copper and aluminum atoms (Cu:8f and Al:8i, 

8j) had the highest total energy. 

Table 3.6: The MuUiken populations for the three atomic positions in YCu4Alg for 
homoatomic calculations on and i[Cui2]  ̂fiameworks at various 

electron coimts. For ^[Alij] ,̂ the Cu atoms had 1 electron, and the A1 atoms had 

3. For J[Cuj2> the Cu atoms had 11 electrons and the A1 atoms had 13. The three 
electron counts considered for each firamework correspond to the foUowing three 
configurations; JECujj] ,̂ i[Cu4Al8] ,̂and iCAlij] .̂ 

Mnlliken Pnpnlatinng • 

Populations without Y Populations with Y 

[Alijf 

electron counts 8f 81 8j 8f 00
 

8j 

1(12) + 3 = 15 1.300 1.188 1.267 1.269 1.178 1.241 
4 + 3(8) + 3 = 31 2.537 2.562 2.655 2.295 2.369 2.400 

3(12) + 3 = 39 3.090 3.413 3.252 2.643 2.871 2.765 

11(12)+ 3 = 135 11.172 11.348 11.234 11.087 11.266 11.141 

llf4Vl-13f8>f3=151 12.440 12.738 12.572 12.192 12.479 12.313 

13(12)+ 3 = 159 12.966 13.416 13.369 12.665 13.032 12.952 

* the underlined population is the highest in each calculation 
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Mulliken Populations vs. electron count 
(without Y) 

15 17 19 21 23 25 27 29 31 33 35 37 39 

electron count 

-•-AI12-8f -•-AI12-8I -A-AI12-8j 

Mulliken Populations vs. electron count 
(with Y) 

« 2.5 --

I 2.25 --(D 
i. 2 -o 
^ 1.75--

S 1.25 

15 17 19 21 23 25 27 29 31 33 35 37 39 

electron count 

-o-YAI12-8f -a-YAI12-8i -A-YAI12-8j 

Figure 3.11; The Mulliken populations for the 3 positions in 'YAI12' (S  ̂ Si, 8j), plotted 
versus various electron counts, for calculations with and without Y atomic orbitals 
included. 
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Table 3.7: The calculated total energies (eV/formula unit) and Fenmi energies of the three 
«[Cu4Alg]  ̂ structures in which the 4 Cu atoms occiq>y the each of the 3 positions 
(8  ̂Si, 8j). Each of the three calculations had the same number of Cu and A1 atoms, 
and the same number of electrons (71e'). 

site with the calculated calculated 
four Cu atoms total energy (eV) Fermi energy (eV) 

8f» -902.164 -6.123 

Si -903.925 -6.513 

Sj -902.412 -6.202 

• the observed 'coloring' of Cu atoms 

The results of these calculations did not give a clear indication of the electronic 

driving force for the ordering of the copper and aluminum atoms within the framework. 

However, we decided to reconsider the initial assunqition that the rare earth atoms are 

singly electron donors to the framework, v^ose orbital interactions with the atoms in the 

framework could be neglected. 

The symmetry of the Y position (2a: 0,0,0) is 4/mmm (D4h) and the arrangement of 

the S copper and 12 aluminum atoms around the Y atom in YCU4AI8 is shown, in Figure 

3.12. There are three sets of atoms surrounding Y: S Cu (8Q atoms at 3.349 A, 4 All (8  ̂

atoms at 3.018 A, and 8 A12 (Sj) atoms at 3.200 A. We carried out three calculations m 

A^ch the Y atomic orbitals (s, p and d) were included sequential .̂ Table 3.8 summarizes 

the results of including Y orbitals, (a) just s, (b) s and p, and (c) s, p and d orbitals. Listed 

in Table 3.8 are the MuUiken populations for each atomic orbital on each atom in the 

primitive imit celL For the four All (80 atoms with the short Y - All distance of 3.018 A, 

the MuBiken populations of the px and py orbitals are imderlined. The greater MuUiken 

populations on these orbitals (px and py) is evidence of a strong interaction between the Y 

and All atoms. Not onfy is there not a similar enhancement of ai  ̂particular orbitals on the 

Cu or A12 atoms, but with Cu atoms on the 8i positions, this stabilizing intoaction is not 

observed. The overly population (type 1: Y - AQ for this bond increases from 0.0341 to 
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a 

Figure 3.12: The coordioation geometry around Y in YCXAk. The Y atoms (large open 
circles) are surrounded a pseudo-cube of 8 Cu atoms (dark gray circles) at a 
distance of3.349 A, 4 All atoms (light gray circles) with the shortest distance of 
3.018 A, and 8 A12 atoms (small open circles) at a distance of3.200 A. 
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Table 3.8: Calculation results with Y atomic orbitals included. 

(a) Calculation results with the inclusion of the Y s-orbital only. 

Number of Electrons: 71.00 Total Energy: -902.8429 eV 
Fermi Energy: -6.1606 eV 

Atom Total s x y z  ̂ -xy xi yz 

Y 0.271 0.271 
Cu 12.366 1.080 0.534 0.444 0.414 1.967 

8f Cu 12.536 1.081 0.537 0.603 0.421 1.969 
Cu 12.483 1.109 0.524 0.542 0.415 1.967 
Cu 12.437 1.087 0.543 0.503 0.410 1.967 

8i 
All 2.567 1.066 0.612 0.478 0.411 

8i All 2.567 1.066 0.612 0.478 0.411 
All 2.562 1.079 0.441 0.629 0.413 
All 2.562 1.079 0.441 0.629 0.413 
A12 2.673 1.033 0.557 0.496 0.587 

8j A12 2.673 1.033 0.557 0.496 0.587 8j 
AJ2 2.661 1.048 0.461 0.562 0.591 
A12 2.661 1.048 0.461 0.562 0.591 

1.980 1.990 1.978 1.978 
1.980 1.987 1.979 1.978 
1.979 1.989 1.979 1.978 
1.980 1.991 1.978 1.979 

Bond T3'pe Distance Overlz  ̂Population 
1 All Y 3.021 A 0.0341 
2 Cu Y 3.349 A 0.0043 
3 A12 Y 3.195 A 0.0115 

(b) Calculation results with the inclusion of the Y s and p orbitals. 

Number of Electrons: 71.00 Total Energy: -903.5266 eV 
Fermi Energy: -6.1938 eV 

Atom Total s x y z x^-y  ̂ xz yz 

Y 0.545 0.274 0.105 0.109 0.057 
gf Cu 12.350 1.096 0.523 0.425 0.416 1.968 1.980 1.987 1.978 1.977 

Cu 12.475 1.091 0.489 0.577 0.426 1.969 1.980 1.986 1.978 1.978 
Cu 12.384 1.102 0.482 0.506 0.403 1.967 1.980 1.988 1.978 1.978 
Cu 12.397 1.096 0.522 0.490 0.396 1.968 1.980 1.989 1.978 1.978 

8i All 2.571 1.076 0.605 0.476 0.414 
All 2.571 1.076 0.605 0.476 0.414 
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Table 3.8: (continued) 

All 2.568 1.086 0.442 0.625 0.415 
All 2.568 1.086 0.442 0.625 0.415 
A12 2.653 1.039 0.541 0.493 0.580 

8j A12 2.653 1.039 0.541 0.493 0.580 
A12 2.637 1.053 0.458 0.546 0.581 
AI2 2.637 1.053 0.458 0.546 0.581 

Bond Type Distance Overlap Population 
1 All Y 3.021 A 0.0698 
2 Cu Y 3.349 A 0.0005 
3 A12 Y 3.195 A 0.0202 

(c) Calculation results with the inclusion of the Y s, p and d orbitals. 

Electron Number; 71.00 Total Energy: -909.1520 eV 
Fermi Energy: -6.7683 eV 

Atom Total s X y z xy xz yz 

Y 3.128 0.265 0.089 0.087 0.046 0.693 0.663 0.344 0.482 0.459 

Cu 
11.925 1.052 0.339 0.324 0.328 1.968 1.975 1.986 1.976 1.976 

Cu 11.988 1.031 0.344 0.426 0.304 1.971 1.978 1.983 1.976 1.976 
Cu 12.063 1.031 0.383 0.443 0.322 1.971 1.977 1.983 1.976 1.977 
Cu 12.023 1.031 0.385 0.375 0.349 1.968 1.975 1.985 1.977 1.977 
All 2.471 1.071 0.585 0.452 0.363 

8i All 2.471 1.071 0.585 0.452 0.363 
All 2.453 1.079 0.433 0.572 0.369 
All 2.453 1.079 0.433 0.572 0.369 

8i  ̂A12 
2.514 1.031 0.487 0.454 0.543 

8i  ̂A12 2.514 1.031 0.487 0.454 0.543 
A12 2.503 1.039 0.433 0.488 0.543 
A12 2.503 1.039 0.433 0.488 0.543 

Bond Type Distance Overly Population 
1 All Y 3.021 A 0.1902 
2 Cu Y 3.349 A 0.0469 
3 A12 Y 3.195 A 0.0754 
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0.1902 as the p, and d orbitals on Y are added. This increase in overlap is greater than that 

of the other Y - Cu and Y - A1 bonds. These calculations were repeated with the Cu atoms 

occiq)yiDg the 8i and 8j positions also, and a conq)arison of the overlap pophiations of the 

three Y - Cu/Al interations is given in Table 3.9. 

In order to further examine the role of the Y atoms in the stabilization of the 

ordering of copper and aluminum atoms, the three calculation with tiie copper atoms 

occi^ying the 8  ̂8i and 8j positions were repeated with the Y atomic orbitals included. The 

results of these repeated calculations are given in Table 3.10, and like the previous 

calculations the lowest energy configuration is with the Cu atoms on site 8L 

Table 3.9: The overly populations for the three Y - Cu/Al bond types for the three 
orderings of Cu (8  ̂8i, 8j). 

atomic 
arrangement 

Y-Cu/Al 
distance (A) 

calculated overly 
populations 

Cu8f 
A18i 
A18j 

A18f 
Cu8i 
A18j 

A18f 
A18i 
Cu8j 

3.349 
3.018 
3.200 

3.349 
3.018 
3.200 

3.349 
3.018 
3.200 

observed 
0.0469 
0.1902 
0.0754 geometry 

0.0643 
0.1370 
0.0674 

0.0695 
0.1613 
0.0632 
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Table 3.10: The calculated total energies (eV/fommla xmit) and Femu energies of the three 
J[YCu4Alg] structures in which the 4 Cu atoms occiq>y the each of the 3 positions 
(81  ̂8i, 8j). Each ofthe three calculations had the same number of Cu and A1 atoms, 
and the same number of electrons (Tie"). For the Y charge iterated atomic orbital 
parameters see Table 3.1. 

site with the calculated calculated 
four Cu atoms total energy (eV) Fermi energy (eV) 

8f -909.152 -6.768 

8i -909.988 -6.955 

8j -909.018 -6.742 

Conclusions on the Ordering ofYCtuAh 

The calculation of the total energy is conq)osed of two terms, the site potential (or 

local configuration) and the pair potential (or nearest neighbor interaction), see (1).̂ °  ̂

< E > = (]i OCi + S pij Pij (1) 

Using the Mulhken populations and atomic orbital energies, calculations were performed to 

separate the total energies into these two parts. The results of these calculations are given in 

Table 3.11, for calculations using two sets of Cu atomic orbital parameters, as well as with 

and without Y atomic orbitals included. The first two sections in the table are calculations 

using the atomic Cu parameters, and the third and foiuth sections on the table are 

calculations using Cu charge iterated parameters. The cohmm of data on the &r right in 

Table 3.11 is the difierence between the pair potentials for the calculations with and without 

yttrium atomic orbitals inchided. Using the Cu charge iterated parameters, the total 

energies, site potentials and pair potentials are lower for the observed structure (Ic, Id) 

than for the Cu atoms on 8i (2c, 2d), which is the site the earlkr MuUiken population 

calculations &vored, see Table 3.6. The differoice in the pair potentials between the 

calculations with and without Y is also greater for the observed (Id) structure than for (2d) 

with the Cu on site 8L This is encouraging, but we need to continue work on understanding 

the ordering of Cu and A1 in YCU4AI8. 
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Table 3.11: The calculated total energy separated into the site potentials and pair potentials 
for dififerent arrangements of Cu and A1 for YCuiAls. 

atonsic coloring total energy (eV) site pair difference in pp 
inYCu4Al8 potential (eV) potential (eV) with and without 

Y included 

3 
00 [CU4AI8 Y~ [Cu = (4s)-l 1.40, (4p) -6.06, (3d) -14.0 eV] 

(la) Cu(80-observed-902.100 -826.051 -76.049 
Al(80 
Al(8j) 

(2a)Al(80 -903.925 -827.425 -76.500 
Cu(8i) 
Al(8j) 

(3a)Al(8lO -902.412 -827.606 -74.806 
Al(80 
Cu(8j) 

i [YCU4 Alg ] [ Y = (4s) -8.45, (4p) -2.98, (3d) -10.94, Cu as above] 

(lb)Cu(8  ̂ -909.152 -824.993 -84.159 -8.11 
Al(80 
Al(8j) 

(2b)Al(8f) -909.988 -825.905 -84.083 -7.58 
Cu(80 
Al(8j) 

(3b)Al(8Q -909.018 -825.370 -83.648 -8.84 
Al(80 
Cu(8j) 

3 
00 [CU4A18]  ̂[Cu = (4s)-8.45, (4p) -2.98, (3d) -10.94 eV] 

(lc)Cu(8  ̂ -753.529 -689.964 -63.565 
Al(80 
Al(8j) 

(2c)Al(8f) -754.280 -688.866 -65.413 
Cu(80 
Al(8j) 
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Table 3.11 -contimied 

(3c)Al(80 
AI(80 
Cu(8j) 

-753.127 -690.062 -63.065 

3 
00 [YCu4 Alg ] [ Y = (4s) -8.45, (4p) -2.98, (3d) -10.94, Cu as above] 

(ld)Cu(8f) 
Al(80 
Al(8j) 

(2d)Al(80 
Cu (8i) 
Al(8j) 

(3d)AI(8f) 
Al(8i0 
Cu(8j) 

-766.063 

-764.684 

-764.537 

-690.544 

-688.191 

-689.291 

-75.519 

-76.493 

-75.245 

-11.95 

•11.08 

-12.18 

Phase Width ofLnCuxAln-x: Theoretical Investigation 

Since the theoretical investigatioa of the phase width of BaCuxAlis-x yielded some 

valuable insight into the observed phase width, a similar series of calculations was carried 

out on the LnCuxAlu-x conqmunds. For this series of calculations, as in the BaCuxAlu-x 

calculations, wliile LnCu4Al8, LnCusAl; and LnCu^Ale are known, the other conipsunds 

were merely hypothetical isostructural corD|)ounds for the purpose of the calculations. In all 

the calculations a primitive unit cell containing 12 atoms was used with different 

combinations of copper and aluminum atoms on the three sites to achieve the desired 

con^sition and to investigate the differences in energy relating to different arrangensents of 

atoms on particular sites. For these calculations, if the composition allowed, site 1 (8Q was 

occupied by coppo:, site 2 (80 ahiminum, and site 3 (8j) was used for mixing copper and 

aluminum as the con^sition dictated. For exanq>le, in LnCugAU, sites 1 and 3 were all Cu 

atoms, and site 2 was all Al, but for LnCuAln, all sites were occi^ied by Al, except one Cu 
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atom on site 1. Each calculation considered the precise electron count ^)propnate for the 

conqx)sition being considered (LnQuAlg = Sle*), as well as one fewer electron per formula 

unit. Mai  ̂of the same conchisions derived from the results of the series of BaCuxAli3.x 

calculations also can be made for this series of calculations. Table 3.12 lists the 

con:qx)sitions, Fermi energies, and overlq) populations for the phases considered. 

Table 3.12: Results for the series of YCuxAli2-x conqwunds forming the ThMniz structure. 

overlap populations for interactions 1,2 and 3 

Composition Fermi Enercv CeV) irCu-Cu/Allfgfi K>
 1
 

00
 1 f 

YCU8AI4 -7.916 0.0485 0.3718 0.0930 
YCueAlfi -7.325 0.0490 0.4154 0.1270 
YCUSAIT -6.894 0.0442 0.4331 0.1433 
YCU4AI8 -6.131 0.0271 0.4373 0.1564 
YCU3AI9 -5.530 0.0280 0.4712 0.1223 
YCuAln -4.287 0.0477 0.4972 0.1547 

Figure 3.13 shows the DOS curves for the three conqwunds YCU8AI4, YCusAl?, and 

YCuAlii, with the Fermi energies represented with the dashed line. All three DOS curves 

contain a strong and narrow Cu d-band between -15.0 and -13.0 eV, with a rather dispersed 

and featureless DOS above this sharp band. The DOS curve for LnCuAln does contain a 

few more prominent features between -10.0 and -4.0eV than the other two DOS curves. 

Whoeas in BaCuxMs-x there were two general types of interactions (Cul central -

Cu2/Al surfece, and Cu2/Al surfece - Cu2/Al sur&ce), in the LaCuxAli2-x calculations, 

because of the greater complexity of the ThMhia structure, it is not possible to consider 

interactions ̂ ^ch are as general as those in the NaZnu structure. Two of the 3 interactions 

which are inqmrtant and representative are (1) the Cu-Cu (or AQ (2.564 A) interaction along 

the 'chain' of Cu atoms, and (2) the All-All 'pair' (2.668 A). The third interaction is an 

weighted average overk^ population of the other distances in the framework near 2.70A. 

Figure 3.14 contains three COOP curves for the three interactions as given in Table 3.12 for 
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0.0 

-2.0 

-4.0 

-6.0 

-8.0 

-10.0 

-12.0 

-14.0 

-16.0 

-18.0 

YCusM YCU4AI8 YCuAlii 

Figure 3.13: The three DOS curves for YCu«Al4, YQuAfe, and YCuAlu. The Fermi energies 
(see Table 3.12) are marked with the dotted lines. 
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0.0 

-2.0 

-4.0 

-6.0 

-6.0 

-10.0 

-12.0 

-14.0 

-16.0 

average interaction All - All Cu - Cu 
2.60 - 2.70 A 2.681 A 2.564 A 

Figure 3.14: The three COOP curves for interactions (1) average framework, 2.60 - 2.70 A, 
(2) All - All 2.681 A, and (3) Cu - Cu 2.564 A, in YCusAl?. The Fermi energy (-6.69 
eV) is marked with the dotted line. 
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the YCusAl? con^sition, ivith the Fensi energy hi^iligfated with the dashed line at -6.89 

eV. Notice that for curves 1 and 3 the Fermi energy crosses at the point i^iere the overl£  ̂

changes fiom bonding (+) to antibonding (-), ^^^lile there are many bonding states left 

unfUed in curve 2 for the A1 - Ai duner-like interaction. In Table 3.12 the maximum in 

overlap population for interaction 3 occurs for the conq>ositiDn YCusAl?, (excluding 

YCuAlii), confirming the COOP curves demonstrate with the Femd energy's position 

at the crossover between bonding and antibonding states. The overlap population for 

interaction 2 continues to increase due to the filling of the bonding states as the Fermi energy 

increases. However, in order to maymiiTO the bonding for interaction 2, many antibonding 

states would be populated for the other interactions in the structure, and this is clearfy 

un&vorable. For the systems which are more copper rich than LnCusAl?, the Fermi energy 

crosses at a lower energy, and there are some bonding states which are left en::9)ty. 

Conversely, for the more atuminum rich ̂ ems, ̂ ^^lere the Fermi energy crosses at higher 

energies, many antibonding states are filled. Similar to was observed in the BaCuxAli3-x 

series, the con^sitions ^^iiich are observed, have Fermi energies \^ch M near this 

crossover, and maximize the bonding in as many interactions as possible. 

Calculations on YCuxAlis-x to Investigate the Role of the Cation in NaZnu 

In the series of calculations on various J[Cu^Ali3_^]~  ̂fiameworks, the barium 

atoms were treated as classical cations donating tteir 2 electrons, but not contributing any 

specific orbitals. While we believe this is not an inaccurate representation of the role of the 

barium atoms, it was inq)ortant to verify tiiat the conclusions made about the BaCuxMs-x 

con^unds did not change when atomic orbitals were included for the cations. In the earlier 

calculations on YCuaAIs, the inclusion of the Y atomic orbitals did yield in:^rtant 

information about the ordering of Cu and A1 atoms. Since the po^^iedron around the Ba 

atoms is nearly spherical with 24 equivalent distances to the Al/Cu2 atoms (3.576 A), the Y 

- firamework atom overk^s should be very small Since comparisons will be made between 

the NaZnu and ThMhn calculations, we decided to use yttrium as the cation, and treat the 
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Y cation as donating 2 electrons in the YCi^Alis-x calculations, and donating 3 in the 

YCuxA1i2.x (ThMhu) calculations. Table 3.13 contains the MuUiken populations for the 

atoms in a single formula unit of YCuAln, as the Y s orbitals (a) and then s, p, and d orbitals 

are included (b). As e}q)ected there is no enhancement of any orbitals on either the Y or A1 

atoms as was observed in the case of YCU4A18. The overlap populations for the Y - A1 

interaction at 3.576 A are inchided in Table 3.13 for both calculations with different orbitals 

on the Y atoms. These small overly populations and the lack of MulHken population 

enhancement siq)port our conclusions that the roles of the cations in the two structures are 

different The Ba atoms, ^ch sit in a highly symmetric, nearfy spherical poljliedron in 

BaCusM do not have any stabilizing interactions with specific atoms in the snub cube tl  ̂

way the Y atoms, which sit in a po^rhedron of lower symmetry, interact with the All atoms 

in YQuAlg. 

Conclusions 

The series of calculations on both BaCuxAlis-x and YC%Ali2.y systems provided 

valuable information about trends in Fermi energies, and overly populations. In both cases, 

the ahiminun>rich phases had higher Fermi energies than the coppa:-rich phases. The phase 

widths of both BaCuxAli3.x (4 < x < 6) and YCuyAln-y (4 < y < 6) can be rationalized by 

understanding the balaiKe between the Fermi energies and the energy of the crossover 

between bonding and antibonding states in the COOP curves. The Fermi energies of the 

observed phases M at or near the crossover for most (if not all) the interactions within the 

Cu/Al firameworks of both structures. The calculations suggest a significant difference in the 

roles of the electropositive metal atoms in the two structures. This difference is one of the 

&ctors \^^ch drives the formation of either of these phases for the different metals. 
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Table 3.13: Calculadon results of YCusAlg with Y atomic orbitals included. 

(a) The calculation results for' YCusM' with onfy the Y s orbital included. 

Number of Electrons: 100.00 Total Energy: -555.565 eV Fermi Enexgy. -4.142 eV 

Atom Total s x v z x^-v  ̂ xv xz vz 
Y 0.250 0.250 

Cu 13.628 1.083 0.853 0.819 0.978 1.978 1.980 1.979 1.980 1.979 
A1 3.019 0.988 0.683 0.584 0.763 
A1 3.030 1.005 0.692 0.611 0.722 
A1 2.984 0.988 0.682 0.591 0.723 
A1 2.996 0.990 0.678 0.593 0.735 
A1 3.013 1.001 0.759 0.688 0.565 
A1 3.037 0.996 0.564 0.778 0.699 
A1 3.012 1.002 0.741 0.680 0.588 
A1 3.066 1.012 0.595 0.740 0.719 
A1 3.009 1.021 0.709 0.690 0.588 
A1 3.058 1.001 0.582 0.761 0.715 
A1 3.008 1.001 0.734 0.688 0.586 

Bond Type Distance Overk  ̂Population 
Y A1 3.576 A 0.0062 

(b) The calculation results for 'YCusAls' with the Y s, p and d orbitals included. 

Number of Electrons: 100.00 Total Energy:-566.043 eV Fermi Energjr: -5.581 eV 

Atom Total s x v z xv xz vz 
Y 5.222 0.222 0.075 0.058 0.053 1.077 0.931 0.947 0.981 0.879 
Cu 12.621 0.990 0.529 0.580 0.644 1.976 1.978 1.975 1.974 1.974 
A1 2.635 0.979 0.527 0.517 0.612 
A1 2.678 0.995 0.539 0.544 0.601 
A1 2.720 0.981 0.577 0.544 0.618 
A1 2.723 0.982 0.571 0.546 0.624 
A1 2.642 0.980 0.581 0.559 0.521 
A1 2.685 0.989 0.535 0.606 0.554 
A1 2.685 0.983 0.592 0.573 0.536 
A1 2.739 1.004 0.564 0.597 0.575 
A1 2.676 0.998 0.566 0.570 0.542 
A1 2.725 0.994 0.544 0.611 0.576 
A1 2.687 0.983 0.586 0.580 0.537 
A1 2.711 0.992 0.543 0.608 0.568 

Bond Type Distance Overly Population 
Y A1 3.576 A 0.0354 
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CHAPTER 4 

QUATERNARY ALUMINIDES 

Introduction 

Chapters 2 and 3 contain a detailed discussion of the synthesis and structure of a 

variety of ternary aluminum-rich phases A^diich form both the NaZnn and ThMau structure 

types. Electronic structure calculations addressed the questions of the phase widths of 

BaCuxAli3.x and LnC%Ali2.y, and the ordering of copper and atuminum atoms in YCXAlg. 

Besides the alkaline earth ternaries, ACU6AI7 (A = Ba, Sr, Ca both EuCueAl? and 

LaCueAl? adopt the NaZnu structure. However, every other rare earth element, in 

combination with copper and aluminum such that the Ln to (Cu/AQ ratio is 1:12 (or 1:13) 

forms the ThMnu structure. The resemblance in both stoichiometiy and elemental 

conqwsition between these two groiq)s of ternary intermetallics forming either of these 

structures is striking, and yet, as prepared from the elements in the arc welder, no ternary 

combination has yielded product containing both structure types. In an effort to examine 

this preference for either the ThMhi2 or NaZn  ̂ structure type, depending on the 

electropositive metal used, quaternary conqwunds were made. Similar differences exist in 

the silver aluminides with BaAgs.sAl7.5 and SrAgs^Al?  ̂forming the NaZnn structure, but 

LnAgxA  ̂ compounds (with variable x and y) form other structures. For example, 

EuAgsAle forms the BaCdn structure type, and Ln2AgxAli7.x (Ln = La - Lu, except Eu and 

Yb) form either the ThzMn or ThzZnn type depending on the sihner: aluminum ratio (see 

chapter 7). 

Synthesis and Results 

Using the same e^q)erimental techniques described earlier (chq)ter 2), the synthesis 

of quaternary phases containing a mixture of electropositive metals was carried out, and 

Table 4.1 contains a list of the reactants and the products observed by powder X-ray 

diffraction, and refined lattice parameters if available. The letter before each con^und will 

be used as a reference within the discussion ofthe results. 
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Table 4.1: The quatemaiy reactant coiqMsitioiis and the products observed by powder and 
single crj^tal X-ray difBaction. 

Reactant Stoichiometrv Pre-Ann, Prod. 
Refined 

Post-Ami. Prod. Lattice P. (A) 

a) BaSrCui2Ali4 

b) BaSrAgiiAlis 

c) BaYCui2Ali4 

d) BaDyCui2Ali4 

e) SrGdCuioAlie 

Q SrCeCunAlu 

g) BaEuAgiiAlis 

h) SrEuAgi2Ali4 

0 EuYbAgioAlu 

j) BaGdAgnAlis 

BaSrCui2Ali4 (a = 12.073(2) A) • -

BaAg5.5Al7 ,̂SrAgs.5Al7i BaSrAgnAlis* a~ 12.627(1) 

same as pre-annealed 

same as pre-annealed 

BaCusjAl; ,̂ YCujAl? 

BaCueAl;, DyCusAl? 

SrCufiAl?, GdCutAlg 

SrCeCui2Ali4 * 

BaAg^7, EuAgsAU (BaCdu) BaEuAgnAlis * a = 12.729(1) 

SrxEu2.xAgi2Ali4, EuAgsAlc (trace)-

EuYbAgioAli2 * (BaCdu) 

BaAgeAly, Gd2Ag7Alio (Th2Mi7) BaGdAgnAlis * a = 12.764(3) 

• f indicates single crystal solution 

The results of the reactions (a) BaSrCui2Ali4, and (b) BaSrAgi2Ali4, are not 

surprising, since all four con^unds BaCusAls, SrCu6Al7, BaAgsAl«, and SrAg6Al7 form the 

NaZnis structure. In the quaternary conipound BaSrCuuAlu, the barium and strontium 

atoms occiq>ying the centers of the snub cubes at (8a: 1/4, 1/4, 1/4), are randomly arranged 

throughout the structure (a = 12.073(2) A). The powder pattern for the pre-annealed 

BaSrAgi2Ali4 product contained two separate patterns indicating that the initial product 

contained both BaAg6Al7 (a = 12.645(1) A) and SrAgeAl? (a = 12.594(3) A). Since these 

two con^unds are isostructural, the two patterns are identical, but each line for 

SrAgs.sAl7.5 appears at a fraction of a degree higher than those lines for BaAgs sAlrs due to 

the smaller lattice constant After flnriealing the product at SSO^C for 10 days, the powder 
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pattern was consistent with a single phase product (a = 12.627(1)A) with Ba and Sr mixed 

randomfy^tfarougfaout the structure. This was confirmed the results of two single crystal 

X-ray solutions whose refined conq)ositions were BaSrAgi2Ali4 and BaSrAg12.4Al13.6-

Table 4.2 and 4.3 contain inqwrtant information about the single crystal solutions for 2 

crystals of BaSrAg^Alu. AH of the single crystal collections and refinements reported in 

this chapter were carried out on a Siemens P4 difi&actometer Kai) as described in 

ch^ter 2. 

The next three reactions listed in Table 4.1 (c, d, and e) were all mixtures of one 

metal which forms the NaZnis structure (Le. Ba or Sr), and another which forms the 

ThMni2 structure (Le. Y, Dy or Gd). In all three reactions the products both before and 

after annealing, were multi-phase. BaYCunAln (c) as characterized by powder X-ray 

diffraction, contained a mixture of BaCucAl? and YCusAl?, and was not annealed. 

BaDyCui2Ali4 (d) was also a two phase product containing both BaCueAl? and DyCusAl? 

in the pre-annealed and post-annealed (900®C for 14 days) products. SrGdCuioAlie (e) was 

also a mixture of the two phases SrCu^Al? and GdCutAlg, both before and after annealing 

(900®C, 14 days). The aimealed products fix>m reactions (d) and (e) were anatyzed in a 

JEOL 6100 Scanning Electron Mcroscope (SE\  ̂using Energy Dispersive Spectroscopy 

(EDS) and the presence of all four elements in each sanq)le was confirmed by ana^rsis of 

muh^le areas of the san^le. 

SrCeCuuAlu (Q was e3q)ected to yield similar products as the reactions direct  ̂

preceding it, due to the feet that the ternary CeCuxAl^-x (4 < x < 6) conqwunds have been 

reported in the ThNfiin structure, and SrCueAl? forms the Na2iii3 structure. However, a 

single phase product SrCeCui2Ali4 containing a random mixture of Sr and Ce atoms was 

characterized forming the NaZnis structure (a = 11.980 A). This result was confirmed by a 

single crystal X-ray solution of a crystal containing a mixture of Sr and Ce atoms, see Table 

4.4 for a summary of relevant crystallogrt^hic information. The presence of all four 

elements was confirmed by ̂ S in the SEM. The size and valrace of these two metal 
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Table 4.2: The summaiy ofciystaUogr^hic iafotmadon for BaSrAgiz4Ali3.6, and 
BaSrAguAlu. 

Refined Chemical BaSrAgi2.4Ali3.6 BaSrAgi 1.97AI14.03 
Formula 

Space Group Fm3c Fm3c 
Unit Cell Dimension 12.705(1) A 12.689(1) A 
Unit Cell Vohmie 2050.8 (3) 2043.1 (3) A' 
Z 4 4 
20I11BX 50» 50® 
Reflections Collected 522 517 
Independant Reflections 95 93 
Observed Reflections 93(Fo>2cr(Fo)) 93 
R, wR (Fo  ̂ 4.0c(Fo)) 0.0165,0.0312 0.0139,0.0249 
R,wR (alldata) 0.0165,0.0312 0.0139,0.0249 
GooF, All Data 1.349 1.222 

Table 4.3: The positional coordinates and equivalent isotropic displacement coefScients 
for BaSrAgi2.4Ali3.6, and BaSrAg^Alw. 

(a) BaSrAgi2.4Ali3.6. 
Atom Site X y z Ueq Site Occ. 

Ba 8a 0.25 0.25 0.25 0.0096(5) 0.5 
Sr 8a 0.25 0.25 0.25 0.0096(5) 0.5 
Agl 8b 0 0 0 0.0153(11) 0.190(7) 
All 8b 0 0 0 0.0153(11) 0.810(7) 
Ag2 96i 0.1226(1) 0.1808(1) 0.0 0.0139(4) 0.501(5) 
A12 96i 0.1226(1) 0.1808(1) 0.0 0.0139(4) 0.499(5) 

(b) BaSrAgi2Ali4 
Atom Site X y z Ueq Site Occ. 

Ba 8a 0.25 0.25 0.25 0.0099(4) 0.5 
Sr 8a 0.25 0.25 0.25 0.0099(4) 0.5 
Agl 8b 0 0 0 0.0118(11) 0.149(6) 
All 8b 0 0 0 0.0118(11) 0.851(6) 
Ag2 96i 0.1226(1) 0.1807(1) 0.0 0.0133(3) 0.486(4) 
AI2 96i 0.1226(1) 0.1807(1) 0.0 0.0133(3) 0.514(4) 
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cations are two &ctors ^vliich may contribute to this i]ne}q)ected resuh. The ionic radius 

(CN = 12) of is 2.151 A, and Ce  ̂is 1.846 Magnetic susceptflnty measurements 

were made on a small sample of SrCeCugAlig, and the material displayed Curie-Weiss 

paramagnetism with an effective moment of 2.26(1) B.M., which accounts for a nearfy 1:1 

ratio of Sr:Ce, see Figure 4.1. This size difference (0.30 A) is much smaller than the 

differences between Ba^  ̂(2.236 A) and (1.773 A) for reaction (c), and Ba^"  ̂ and Dy  ̂

(1.775A) for reaction (d), of0.463 A and 0.461 A respectivefy.̂ '̂ SrGdCuioAlie (e) formed 

a combination of the two ternaries StCu6Al7 and GdCusAl?. It is possible that the similar 

size difference between Sr and Ce allow for the mixed occiq)ancy of that position within 

the NaZnia structure. 

Table 4.4: The summary of crystallogr^hic information for SrCeCu7j4Ali8.6s-

Refined Chemical 
Formula 

SrCeCu7j4Ali8.65 

Space Group 
Unit Cell Dimension 
Unit Cell Vohime 
Z 
20inax 
Reflections Collected 
Independant Reflections 
Observed Reflections 
R, wR (FO^ 4.0ct(FO)) 
R,wR (andata) 
GooF, All Data 

Fm3c 
11.938(1) A 
1701.4(2) A  ̂
4 
50" 
427 
78 
69(FO>2<t(FO)) 
0.0243,0.0616 
0.0263, 0.0619 
1.180 

Atom Site X y z Ueq Site Occ. 

Ce 8a 0.25 0.25 0.25 0.0080(9) 0.5 
Sr 8a 0.25 0.25 0.25 0.0080(9) 0.5 
Cul 8b 0 0 0 0.0150(2) 0.53(2) 
All 8b 0 0 0 0.0150(2) 0.47(2) 
Cu2 96i 0.1170(1) 0.1769(1) 0.0 0.0139(8) 0.445(11) 
A12 96i 0.1170(1) 0.1769(1) 0.0 0.0139(8) 0.555(11) 
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Figure 4.1: The magnetic susceptibility curve for SrCeCugAlu, which shows Curie-Weiss paramagnetism, with an effective moment 
of 2.26(1) Bohr magnetons, llie small feature at ~ 60K is due to the condensation of oxygen on the sample holder, and is 
not a feature of the magnetic susceptibility of the sample. 
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The rare earth ternary sQver ahindnides do not form the Th\foi2 structure, but form 

a varied of network structures including the BaCdti, ThaNin and ThzZnir- '̂pes. EuAgsAie 

and LaAgsAls form the BaCdn structure,̂  ̂ and a number of ternary silver alumimdes 

(LibAgcAli7-x) form either the ThzMt? or Tb2Zni7 structure depending on the silver ; 

aluminum ratio.̂  ̂

BaEuAgiiAlis (g) was initial]  ̂ characterized as a mixture of Eu^sAle and 

BaAg5.5A]7 .̂ However, after annealing (900®C, 14 days) single phase product was 

characterized by powder X-ray diffraction, observed in the NaZnia structure with a refined 

lattice parameter of a = 12.729(1) A. Based on a single crystal X-ray solution (see Tables 

4.5 and 4.6) the refined conqMsidon of this product was Ba£uAgi4Ali2. The magnetic 

susceptibility of BaEuAgi4Ali2 showed Curie-Weiss paramagnetism with Heff == 6.65(1) 

B.M., A^ch accounts for about 40% of the snub cubes being occiq)ied by Eu atoms (Eu"^ ,̂ 

f, 7.94 All four elements were detected by EDS in the SEM in various regions of 

the homogeneous looking san^le. 

Table 4.5: The summary of ciystallogrj^hic information for BaEuAgi4Ali2. 

Refined Chemical BaEuAg14.0sAl11.9s 
Formula 

Space Groiq) 
Unit Cell Dimension 
Unit Cell Vohmie 
Z 
26ti]ax 
Reflections Collected 
Independant Reflections 
Observed Reflections 
R, wR (Fo  ̂ 4.0 a (Fo)) 
R, wR (all data) 
GooF, AH Data 

Fm3c 
12.727(1) A 
2061.5(2) 
4 
50' 
523 
95 
92(Fo>2a(Fo)) 

0.0139, 0.0271 
0.0141,0.0271 
1.145 
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Table 4.6: The atomic posidoos, site occupancies and isotropic displacement parameters for 
BaEuAgu.osAli 

Atom Site X y z Ueq Site Occ. 

Ba 8a 0.25 025 0.25 0.0111(4) 0.5 
Eu 8a 0.25 0.25 0.25 0.0111(4) 0.5 
Agl 8b 0 0 0 0.0129(10) 0.287(7) 
All 8b 0 0 0 0.0129(10) 0.714(7) 
Ag2 96i 0.12215(4) 0.18146(4) 0.0 0.0141(3) 0.561(5) 
A12 96i 0.12215(4) 0.18146(4) 0.0 0.0141(3) 0.439(5) 

SrEuAguAlu G^) was a similar combination as BaEuAgnAlis, except the sizes of 

Sr^  ̂ and Eu""  ̂ are very similar, (2.151 A, and 2.041 A respectivefy).̂ '' The product 

contained a trace of EuAgsAU, but the major phase (q}proximate conqrasition), SrxEu2. 

xAgijAlu, adopts the NaZnis structure. 

Since both Eu (4f'6s^) and Yb (4f ̂ 6s^) are common  ̂+2 cations, and often form 

similar confounds, the quateroaiy EuYbAgi2Alio (0 forms single phase product forming 

the BaGin structure. From a single crystal X-ray structure refinement the conqposition of 

this phase is EuYbAgn ssAlio.u, and the Yb and Eu are randomfy  ̂ arranged within the 

structure, (see chs^ter 7). 

In reaction (j) BaGdAgnMs initial  ̂formed a mixture of BaAg5.sAl7.5 and 

Gd2Ag7Alio ̂ ^ch forms the ThaMi? structure. This product was annealed (900°C, 14 days) 

and characterized as a single phase material with the NaZnn structure, with a refined lattice 

parameter of a = 12.763(3) A. The magnetic susceptibility of this product showed Curie-

Weiss behavior with a |j«ff = 2.40(3) B.M., ^ch would account for about 1/6 of the snub 

cubes occiq)ied by Gd^  ̂ (f) cations. For a IBarlGd ratio, a mommit of near 7.9 |1b would 

bee:g)ected. 
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Conclusions 

The investigation of quaternary aluminide systems resulted as e;q)ected in products 

resembling the combination of the ternary systems. In all of the copper ahuninum reactions 

(except SrCeQiuAlu) in >^ch the two electropositive metals form different ternaries, the 

quatemaiy product was a combiaation of these two phases. Annealing these products did 

not yield single phase products. However, in the silver aluminum reactions, \s1iile the mfrial 

products were usualfy multi-phase, annealing transforased several of the i»oducts to a 

(mixed cation) single phase material De^ite a few single crystal refinements and some 

EDS, many of these compounds need noore accurate con^sitional analysis, to more 

carefiilfy  ̂determine the phase widths and the ̂ ent of cation mixing. 
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CHAPTERS 

TERNARY RARE EARTH-GOLD-ALUMINIDES FORMING 
STRUCTURAL VARIANTS OF BaAU 

bitroduction 

We began oiir investigations of ternary intermetallics with vec between 2 and 4, 

with the harhiTTi-cnpper-ahiTninimi system. As described in ch^ter 2, the ternary 

con^KJund, BaCuxAli3.x (4 < x < 6), forms the NaZnis structure, in v^^h Ba atoms are 

surrounded a J[Cu(CUyAli2_y)] (3 < y < 5) cubic fi:amework of Cu-stuffed icosahedra 

with randomly arranged copper (ca. 33%) and aluminum (ca. 67%) atoms. As discussed in 

chapter 3, this confound is an exan:q>le of a ternary aluminide whose vec maximizes the 

bonding within the ^[CUsAlg] network as observed in its overlap populations. These 

theoretical results provide jxistification for attractive Al -Al, Cu-Al, as well as Cu-Cu, 

interactions in these intermetallics. When the more electrooegative Ag and Au are used 

rather than Cu, we observe some differences in the structural chemistiy. As presented in 

cfa2^er 2, the new ternary silver ahuninides AeAgs sAl^s (Ae = Ba, Sr) are isostructural 

with BaCusAlg, but in chapter 7 the rare earth-silver-alimunides (ie. EuAgsAk, 

La2Ag7Alio) which fomi several different structure types including BaCdu, Th2Mi7 and 

Tl^Zni? will be presented. With the inclusion of gold into these ternary intermetallics, we 

observe structural variants of both NaZn  ̂and BaAl4. The new ternary gold ahmunides, 

AeAus.5A]6j (Ae = Ba, Sr, Eu, La) form a tetragonal variant of the cubic NaZnn structure 

and will be introduced in ch^ter 8. This chapter will present the synthesis, 

characterization and electronic structure investigation of several new ternary gold 

ahuninides v^ch form structures related to BaAU. 

While BaA]4 represents one of the most prolific structure types,̂ '̂̂ °  ̂ isostructural 

con^unds involving main-grotq) metals are restricted to vec<3.5.f^^  ̂ BaAl4 is a body-

centered tetragonal structure, which crystallizes in the ^)ace groiq) I4/mmm (No. 139), 

with 2 atomic positions occiq)ied by aluminum atoms: All ̂  (0,0.5,0.25) and A12 Ae (0, 

0, z). The All (Ad) atoms are arranged in two-dim»)sional square nets, which are linked 
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via pairs of A12 (4e) atoms vMcb. sit above and below the square nets, see Figure S.lGeft). 

The All atoms are tetrahedralfy coordinated by four A12 atoms, and the A12 atoms are 

each surrounded by four All atoms, and one AI2 atom, in a square pyramid. There are 

several ordered variants of BaAU, in v4uch one of these two A1 positions is occupied (or 

partial  ̂occiq)ied) by a third type of atom. In ThCr2Sh, the transition metals occiq)y the 

4d positions (ie. the square nets), and the main groiq) atoms occupy the 4e positions (pair 

linkages). In CaBe2Ge2 (P4/nmm), the two-dimensional square nets are conqrased of 

either all Be or all Ge atoms, and these 'layers' are arranged in an ahemating pattern along 

the c-direction. The heteroatomic 'Ge - Be' pairs (4e) ^ch connect the layers are 

arranged with the Ge atoms connecting to the 'Be2' layers, and the Be atoms connected to 

the 'Gez' layers. In BaNiSna iI4min), the Sn atoms form the square nets (4 ,̂ and the 

heteroatomic 'Sn-Ni' pairs (4e), align in the same direction throughout the structure. The 

con:q)osition, bonding and electronics of many con^unds forming the BaAU structure 

have been carefiiUy examined, and though it is not ^ropriate to include a lengthy 

discussion here, it is valuable to review a few of the results concerning the electronic 

structure of BaAl4, that will appfy to the ternary gold con^unds. 

The BaAU structure is generally observed for conqx)unds with vec between 2.75 

and 3.5, or ahemativety, systems with 11-14 valence electrons (Le, BaAU: 2 + 4(3) = 

14). In their treatment of BaAU, Burdett and Mller concluded that 12 of these 

electrons are involved in multi-center bonding within the J [Al2Al2]^~ layers, which are 

connected via two-center, two-electron bonds between A12 atoms. In BaAU the states 

near the top of the valence band have antibonding (or n*) character, and are associated 

with these A12 pairs. For systems with fewer than 14 electrons, some of these n* orbitals 

would remain unocciq)ied, and may have stronger (Le. shorter) bonds between the A12 

atoms. For exanple, in SrAU (14-electroDs) the All - A12 bond distance is 2.648 A, and 

the A12 - A12 distance is 2.652 A, with a c/a ratio of 2.510.'̂ *®' In SrCu2Si2 (12-electrons), 

the All - A12 distance is 2.465 A, and the A12 - A12 distance has shortened to 2.420 A, 

with a smaller c/a ratio of 2.38.'̂ ' These considerations of electron count and bonding 
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Figure 5.1; Left; The structure of BaAU; large open circles are Ba, and small gray circles are Al. 
Right: The structure of DysAuaAlp, (a-LasAln); the large open circles are Dy, the small open 
circles are nearly exclusively Al, and the large gray circles are occupied 48% Au : 52% Al. 
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will be usefiil in the following discussions about the new ternary gold con^unds, and 

their electrons structures. 

The rare earths (exc^t Eu) do not form binary ahnmoides with con^sition LnAU 

in the BaAU structure type (yec = 3.75, 15-electrons); rather, they form LnsAlii-'̂  ̂ The 

low ten^perature a-LnsAln (Ln = La, Ce, Pr, Nd) is a body-centered orthorhonabic 

structure which imdergoes a phase transition (above 976 "C for LaaAlu) to the tetragonal 

BaAU structure type with ordered vacaiKies, P-LnsAln (LnOojaAfe.s?, vec = 3.5). The 

structure of a-LnsAln is also closefy related to BaAU as shown in Figure 5.1(a) and (b). 

In a-LasAlii, the unit cell is three times the size of BaAU, and one of the 'pairs' from the 

BaAU framework has been, condensed to a single A1 atom, making the conq>osition 

La^Alii, not 'LasAliz'. the condensation of a 'pair' to a single atom the two-

dimensional sheets shift to form one-dimensional ribbons of squares extended in the a-

direction. While in BaAU there is a single type ofpo^edron surrounding the Ba atoms, in 

a-LasAlii there are two polj^iedra for the La atoms, see Figure 5.5. The reason these rare 

earth elements form LnsAln rather than LnAU is probably a combination of several &ctors 

inchid  ̂cation size and electron count. 

In previous investigations of ternary rare earth-gold-aluminum systems, HuQiger et 

aL have reported LnAu^AU-x (x = 1-1.5, Ln = La-Tb) with vec = 3.0-3.25, which form 

the BaAU structure, if Au and A1 are disordered, but form the BaNiSns -type if the A1 

atoms are ordered. LnAuxAU-x (x = 1.5-2, Ln = La—Tb) with vec = 2.75-3.0 are 

reported to form the CaBe2Ge2 structure type.̂ ^  ̂ HuUiger comments that '̂ vhile the 

sanq)les with La, Ce, Pr and Nd were &irly pure, those with the heavier Ln elements 

contained increasing amounts of foreign phases", and "the samples with Ln = Dy were 

very inqjure".̂ '̂*'' Several rare-earth-gold-galUdes have been reported in variants of BaAU 

also; LnAu*Ga4.x (Ln = La, Ce, Pr, Nd, Sm, 0.3 < x < 1.3) form a ternary BaAU-type, and 

LnAui.sGa2.5 (Ln = La, Ce, Pr, Nd, Sm) form the CaBe2Ge2-type.̂ '̂̂  I have observed 

several rare earth-gold-aluminides (e.g, EuAuo.75Al3.25, vec = 3.125), forming the BaAU 

structure type, with no ordering of the Au and A1 atoms, as well as the formation of 
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several new ternary gold-ahnmnides, LnaAifcM (Ln = Sm, Gd, Tb, Dy, Yb), ^diich form 

the a-LajAlu structure type. 

Ln3Au2Al9 (Di = Sm, Gd, Tb, Dy, Yb) - New Ternaries Forming the a - LasAln 
Structure 

Synthesis and Characterization 

The new ternary confounds Ln3Au2A]9 (Ln = Sm, Gd, Tb, Dy, Yb) were prepared 

&om the elements in an Ar-fiUed arc melting furnace, with a zirconium getter for further 

atmosphere purification, using the same techniques described in chE^er 2. The elements, 

Sm, Gd, Tb, Dy, Ho, Yb, Y (Niaterials Preparation Center, Ames Lab, 99.0%), Au wire 

(Aesar 99.95%), and A1 foil, were cut into stoichiometric amounts in an Ar-filled 

glovebox usmg foil to wn  ̂the metals into a small ball to be transfoied to the arc melting 

chamber. The reaction products were shiny silver and homogeneous in ^)pearance, and 

the arc-melted buttons were easily broken with a mortar and pestle and ground into dark 

gray or black powders. Table 5.1 gives the reactant con^osition and the products 

identified by powder X-ray diffraction. The Dy3Au2Al9 product was wr^ped in Nb foil 

and sealed in an evacuated fused silica tube for annealing (850 **€ ,14 days). These new 

conqwunds crystallize in a ternary derivative of the a-LasAln-type. 

Table 5.1: LnsAuzAlg (Ln = Sm, Gd, Tb, Dy, Ho, Yb, Y) reactions and products identified 
by X-ray difi&action. For those reactions in A^diich mulitple phases were observed in 
the powder patterns, the major product is indicated with a (*). 

reactant reaction X-ray 
con:q)osition products characterization 

Sm3Au2Al9 
Gd3^U2Al9 
Tb3Au2Al8 
Dy3Au2Al9 
H03AU2AI9 
Yb3Au2Al9 
Y3AU2AI9 

Sm3Au2Al9 * + 'SmAUxAj '̂ powder 
Gd3Au2Al9*+ 'GdAuxAly' powder 
Tb3Au2Al9 
Dy3Au2Al9 
'AuAfc' + ? 
Yb3Au2Al9 
'AuAla' + 'YAUxAly' 

powder 
powder, single crystal 

powder 
powder 
powder 



www.manaraa.com

83 

Powder X-ray structure analysis was carried out on all the products, using an Enraf-

Nonius Guinier camera (Cu Kai with Si standard), and for Dy3Au2A]9, single crystal 

analysis was carried out on a Siemens ^o Kai) diffiactometer. By powder X-ray 

di£E^tion Dy3Au2Al9, Tb3Au2Al9, and Yh3Au2Al9, were single phase products, and using 

measured lines from the powder pattern lattice parameters were refined. The refined lattice 

parameters for these ternary gold con^unds are listed in Table 5.2, and decrease 

according to the decreasing size of the rare earth atoms from Smto Yb. 

Table 5.2: The refined lattice parameters fiom powder X-ray data. 

Compound a (A) b (A) c (A) 

Sm3Au2Al9 4.305 (4) 10.064 (3) 12.733 (2) 

Gd3Au2Al9 4.275 (3) 9.978 (4) 12.602 (8) 

Tb3Au2Al9 4.276 (3) 9.970 (5) 12.583 (8) 

Dy3Au2Al9 4.265 (1) 9.952 (2) 12.563 (4) 

Yb3AU2Al9 4.251 (3) 9.952 (5) 12.522 (9) 

Sm3Au2Al9, Gd3Au2A]9 were the major phases identified in the reaction products, 

but a cubic Laves phase was also identified in the powder pattern. SmAib and GdM are 

both cubic Laves phases, and the lines in the product powder patterns match those of the 

binary ahnninides welL However, the theoretical X-ray powder patterns of LnAuxM-x 

(vdiere 0 < x < 1), differ onfy slight  ̂from the theoretical patterns of the binary 

ahiminides, malring it difficult to assess the con^sition of the Laves phase without a 

single crystal refinement. While there are no LnAuKAl2.x cubic Laves phases reported in 

Pearson's Handbook of Crystallogrc^hic Data for Intermetallic Phases  ̂ several 

LnAgxAl2.x phases are known. 
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DyiAuzAh: Structure Solution 

A crystal firagment of Dy3Au2A]9 taken fiom the annealed product was loaded in 

air into a glass capillary, for single crystal X-ray anafysis. Peaks located from a rotation 

photo were used to obtain a unit cell whose orientatk>n matrix was refined using a groiq) 

of 48 reiections in the 26 range 10° to 30**. A data set of899 reflections, containing 295 

unique reflections, as well as absorption correction reflections, was collected on a Siemens 

P4 dif&actometer at 298 ± 1 iC. Lorentz and polarization corrections were applied to the 

<^gta set. A semi-empirical absorption correction was applied based on a series of 

a^hrnithal reflections collected. The structure was solved using direct methods with 

refinement calculations performed on a Digital Equipment Micro Vax 3100 con^uter 

using SHELXTL-PLUS programs as described in chapter 2. Table 5.3 summari2Bs the 

important structure solution information and Table 5.4 contains positional and 

dispbconent parameters for the Dy3Au2A]9 structure. 

Physical Measurements 

Several crystallites of DysAujAfc were anafyzed with energy-dispersive 

spectroscopy in a Jeol 6100 scanning electron microscope, which indicated that Dy, Au 

and A1 were the only elements present in the sample. 

Small pieces firom the buttons of Dy3Au2Al9 (annealed, 0.0392 g), Gd^AuaAl? 

(0.0328g), and TbsAujAfc (0.0254g) were ghied inside straws for magnetic susceptibility 

measurements fix)m 6 K to 300 K at a field strength of 3 Tesla, see Figures 5.2, 5.3 and 

5.4. For muh^le magnetic atoms per formula unit the calculated effective moment is 

determined by equation (1). 

Heff= g [n(J)(J+l)]^  ̂ (where n is the # mag. atoms/formula unit) (1) 

Nfognetic susceptibility measurements on DysAuaAlg showed Curie-Weiss paramagnetism 

with an effective moment of 18.54(4) (for T >100 K), corresponding to three 

noninteracting Dy^  ̂ (f'), or 10.70^  ̂ per atom. By equation (1), the magnetic 

mnrpent for three noninteracting Dy^  ̂ atoms is 18.43 hb- Gd3Au2Al9 also showed 
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paramagnetic behavior with an effective moment of 12.82(1)  ̂(for T > 150K), 

corresponding to three noninteractiag Gd^  ̂ (f), or 7.40 per Gd^  ̂ atom. TbjAu2Al9 

also showed Curie-Weiss paramagnetism with an efifective moment of 15.71(1)  ̂(for T 

> lOOK), >^ch is slightfy higher than the moment ejqpected for three nouinteracting 

(f) of 14.70 hb, or 8.50 hb per atom. 

Table 5.3: A summary of the single crystal refinement of Dy3Au2Al9. 

Refined Con^sition 
Space Groiq) 
Unit Cell Dimensions 

Unit Cell Volume 
Z 
Density (calc.) 
Crystal habit: shape 
Absorption CoefEicient 

Radiation 
Ten^)erature (K) 
20 max 
Scan Range (a) 
Scan Speeds 
Index Ranges 

Reflections Collected 
Independent Reflections 
Observed Reflections 

Weighting Scheme 
Parameters Refined 
R Indicies [Fo ^ 2.0<t(FO)] 
R Indicies (all data) 
Goof (all dka) 
Data-to-Parameter Ratio 
Largest Difference Peak 
Largest Difference Hole 

Dy3Au2.08Al8.92 
/mmm (no. 71) 
a = 4.262(1) A 
3 = 9.941(2) A 
c= 12.552(4) A 
531.8(2) A  ̂
2 
7.106 Mg/m  ̂
silver; irregular 
50.079 

Mo Ka(X = 0.71073 A) 
298(1) 
50" 
0.85" 
Variable; 3.0 to 20.0®/min. in o 

-5< A<5,-11 <ife<ll,-14</<14 

588 
295 (Ri« = 0.0272) 
253(Fo^2.0a(Fo)) 

w= 1/[S^(FOM0.0331P)^+0.0P] • 
33 
R = 0.0253 wR = 0.0589 
R = 0.0329 wR = 0.0617 
1.008 
7.7:1 
1.487 e/A  ̂
-1.272 e/A  ̂

• P = (FO^ + 2FC^)/3 
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Figure 5.2: The magnetic susceptibility data for DyjAuaAlg. 
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Figure 5,3 : The magnetic susceptibility curve for GdsAuiM. 
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Figure 5.4: The magnetic susceptibilty measurement for Tb3Au2Al9. 
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Table 5.4: A summaiy of structural information for Dy3Au2Al9. 

Refined Con:p)sition DyjAu^ogAlg  ̂
Space Groiq) Imrnm (no. 71) 
Unit Cell Dimensions * a = 4.265(1) A 

6 = 9.952(2)A 
C=12.563(4)A 

Atom Wyckoflf X y z occ. 

Dyl 2a 0 0 0 1.0 0.0080(4) 
Dy2 4/ 0 0 0.3155(1) 1.0 0.0081(3) 
Aul 8r 0 0.3608(1) 0.3401(1) 0.484(3) 0.0092(5) 
All 8n 0 0.3927(2) 0.3462(8) 0.516(3) 0.0092(5) 
Au2 Ah 0 0.2137(4) 0.5 0.068(4) 0.0097(14) 
A12 4/i 0 0.2137(4) 0.5 0.932(4) 0.0097(14) 
A13 8/ 0 0.2716(4) 0.1477(3) 1.0 0.0099(9) 
AW 2d 0 0.5 0 1.0 0.013(2) 

* Lattice parameters as refined &ompowd» X-ray data. 

LfysAuzAh - Structure Description 

Note: Mult^le crystals of DysAujAlg were anafyzed by single crystal X-ray dif&action 

techniques, and the following structure descr^tion and electronic structure discussion will 

be in reference to this conqmund. The other LnsAujAlg phases C^n = Sm, Gd, Tb, Yb) are 

considered isostructural based on the powder X-ray analysis, but their structures and 

con^sitions have not been confirmed by single crystal analysis. 

Dy3AibAl9 fonss the a-LasAln structure type whose body-centered orthorhombic 

unit cell contains 2 formula units or 28 atoms, axid is closely related to BaAU (see Figure 

51 (right))- In BaAl4, sheets of square pyramids are linked together along the c-direction 

by direct connections between apex, atoms, which results in the formation of 18-vertex 

po^iiedra surrounding the Ba atoms. As mentioned earlier, calculations suggest these 

linkages to be two-center, two-electron bonds.̂ ^  ̂In a-LnsAlu, the unit cell is three times 

as large, and two of the apex-^)ex connections have been condensed to siogle atoms 

(A14), which have square prismatic coordination, and account for the deficiency in A1 
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making the con^wsition Dy3Au2A]9 and not DysAihAlio" This difference from BaAl4 

also leads to the disn^on of the square net of A1 atoms (the bases of the square 

pyramids) into ribbons along the a axis. There are two Qrpes of po^liedra surrounding the 

Dy atoms: (1) an elongated rhombic dodecahedron con^osed of 18 A1 and Au atoms. 

Figure 5.5 (a), surrounds the Dyl atoms on the comers and body center of the cell; and 

(2) an irregular potj^iedron conqwsed of 16 A1 and Au atoms. Figure 5.5 (b), encapsulates 

each Dy2 atom. The large gray atoms in Figure 5.5 (labeled Aul), >»^h is an averaged 

position of the Aul and All parameters (see Table 5.4), form a cube around the Dyl atom 

and are occupied by 48.4(3)% Au and 51.6(3)% AL The one-dimensional ribbons of 

squares which extend in the a-direction (position 4h, labeled A12 in Figure 5.5), contain a 

small fraction of gold atoms (6.8(4)%). 

Electronic Structure Calculations on Ln^AuiAU 

Extended Htickel calculations '̂"' were performed on Ln3Au2Al9 to examine the 

electronic structure of this conq>ound and to he  ̂understand the mixing of Au and A1 

within the structure. Valence atomic orbitals of Y were selected to mimic Dy without its 

localized 4f orbitals, since the ionic radius of (1.773 A) is sfmilar to Dy^"  ̂ (1.775 

Usualfy we can treat these elements as classical cations, Ln^  ̂but with the shortest Dy-Al 

distance of3.067(7) A and the shortest Dy-Au distance of 3.204(1) A, we included them 

in the calciilation. Table 5.5 contains the atomic parameters used in the calculations for Y, 

Au and AL 

As an initial investigation of the electronic structure of the ahuninum-rich 

frameworic, we considered the homoatomic ^[Alj fi:amework from a-LasAlu with an 

electron count of 38, \^Mch is appropriate for Ln3Au2Al9. MuUiken populations were 

calculated for each atomic position: these are 3.676 (8n), 3.374 (4h), 3.266 (81), and 3.512 

(2d). For 42 electrons per formula unit, the electron count ^>propriate for LasAln, the 

MuUiken populations are, 3.900 (8n), 3.653 (4h), 3.810 (81), and 3.853 (2d). The position 
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(a) The 18-vertex elongated iix>mbic dodecahedron around Dyl with Aul atoms shown 
but not All. Dyl distances to the framework atoms are: Dyl- Aul 3.238(1) A, Dyl-A12 
3.555(2) A, Dyl-AB 3.275(2) A, and Dyl-AW 4.971(3) A. Other bond distances within 
the framework: Aul-Aul 2.767(2)A, All-All 2.13(2)A, Aul-All 2.452(1)A, Aul-AB 
2.509(2)A, Aul-A12 2.484(2)A, A11-AI2 2.625(1)A, A14-AB 2.931(4)A, AJ4-A12 
3.009(3)A. Bond distance Dyl-All, not shown 3.067(7)A. 

(b) The 16-vertex polyfaedron around Dy2, with Aul, but not All atoms shown. 
Distances are: Dy2-All 3.130(9) A, Dy2-Aul 3.204(1) A, Dy2-Au2/A12 3.143(3)A, 
Dy2-AB 3.148(3) A, and Dy2-A14 3.1474(9) A. 

Figure 5.5: The po^liedra surrounding the (a) Dyl and (b) Dy2 atoms. 
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with the largest population at both electron counts is the 8n position. Using MulUken 

populations for the framework as a guide for the atomic ordering in the temaiy 

con^und, the positions with the largest MuOiken populations would be the positions 

most likefy  ̂ occiq)ied by the atoms with the largest electronegativity.̂ ^^  ̂ The Pauling 

electronegativity of gold is 2.4, and ahmiinum is 1.5.̂ ^  ̂ In the ternary compound 

Dy3Au2Al9, this 8n position is occiq)ied by 48.4(3)% Au and 51.6(3)% AL 

Table 5.5: The atomic orbital parameters used for the extended Htickel calculations. 

Element Atomic Orbital Ha (eV) Ci  ̂ C2 

A1 3s -12.30 1.37 
3p -6.50 1.36 

Au 6s -10.92 2.60 
6p -5.55 2.58 
5d -15.07 6.16 0.6444 2.79 0.5357 

yPZ] 5s -6.78 1.74 
5p -4.28 1.70 
4d -6.50 1.56 0.8316 3.55 0.3041 

Since the X-ray diffraction e}q)eriment indicated no special ordering of Au and A1 

atoms on the 8n position, calculations were perfomKd on noodel structures in which the 

Au and A1 atoms were arranged with on]  ̂ homoatomic (Au-Au and Al-Al) or only 

heteroatomic (Au-Al) contacts. The partial density of states (DOS) curve for the 

j[Au2Al9]'' framework in LnjAujAlg and the crystal orbital overly population (COOP) 

curve for the Aul—All contacts are shown in Figure 5.6. The Fermi energy lies in an area 

of nonzero DOS, and Ms in the region of the crossover from bonding to antibonding 

levels in the Aul-All COOP curve indicating a near optimization of the bonding at this 

vec. The total energy for the structure with just heteroatomic contacts is 0.5 eV per 
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-4.0 

-6.0 

Aul - All 

-8.0 

-10.0 
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Figure 5.6: Left: (a) The partial DOS curve for the ^[AUjAl,]"' franiework of Y3AU2AI9. 

Right: (b) The crystal orbital overk  ̂ population curve for the Aul-All 
interaction, showing the nearity optimal filling of bonding orbitals (+), and leaving 
unfilled the antibonding orbitals (-). The Fermi energy is -5.21 eV, and is marked 
with a dotted line. 
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fonnula unit lower than that of the structure with homoatonuc contacts.̂ '̂̂  Having two 

such bonding contacts per formula unit, with onty heteroatonaic Au-Al contacts places an 

iqjper limit of two gold atoms per formula unit. These results indicate there may be a 

range in con^sition between x = 0 and 2, for LnsAuxAln-x. 

EuA1io.75Al3.75 - A Disordered Ternary Derivative of BaAU 

Synthesis and Structure Solution 

The synthesis of this europhmirgold-ahmiinide was carried out in an arc welding 

furnace from the elements, with the reactant con^sition EuAuAls. Based on powder X-

ray difBraction the product was a mixture of Alanda'BaAU' - like phase (but not EuAU), 

and some weak lines >^ch could not be assigned. A crystal from the reaction product 

was loaded onto a fiber in air with epoj^r. Peaks located from a rotation photo were used 

to obtain a unit cell whose orientation matrix was refined iising a groiq) of 34 reflections in 

the 26 range 13** to 30°. A data set of262 reflections, containing 77 unique reflections, 

as well as absorption correction reflections, was collected on a Siemens P4 diffractometer 

at 298 ± 1 K. Lorentz and polarization corrections were applied to the data set. A semi-

enq)irical absorption correction was appHed based on a series of azmnithal reflections 

collected. The structure was solved using direct methods with refinement calculations 

performed on a Digital Equ^ment Nficro Vax 3100 conq)uter using SHELXTL-PLUS 

programs as described in ch^qpter 2. Table 5.6 summarizes the important structure solution 

information and Table 5.7 contains positional parameters, site occupancies and 

displacement parameters for the EuAuo.75Al3.25 structure. 

Structure Description 

The structure of EuAuo.7sAl3.25 is a ternary variant of BaAU in \^cli Au2 and A12 

atoms occi^y the positions which connect the two-dimensional square nets of All 

atoms, see Figure 5.7. This arrangement of Au2 and A12 atoms in EuAuo.7sAl3.25 is similar 

to the Au and A1 distribution in Dy3Au2Al9. The structure solution indicated no ordering 
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Table 5.6: A summary of the structure refinement for EuAuo.tsAIs .̂ 

Refined Con:q)osition 
Space Group 
Unit Cell Dimensions 

Unit Cett Volume 
Z 
Density (cak.) 
Crystal habit: sba  ̂
Absorption Coefficient 
Radiation 
Temperature (K) 
26,»x 
Scan Range (GO) 
Scan Speeds 
Index Ranges 
Reflections Collected 
Independent Reflections 
Observed Reflections 
Parameters Refined 
R Indicies [Fo > 2.0o(Fo)] 
R Indicies (aQ data) 
Goof (all d^) 
Data-to-Parameter Ratio 
Largest Difference Peak 
Largest Difference Hole 

EuAuo.78Afe  ̂
I4/mmm (no. 139) 
0 = 4.318(1) A 
c= 11.165(2) A 
208.17(8) A  ̂
2 
6.261 I^m  ̂
silver: irregular 
50.079 
Mo Ka (A, = 0.71073 A) 
298(1) 
50® 
0.85® 
Variable; 3.0 to 20.0®/min. in o 
-5< A<5,-5<A-<5,-13</<13 
262 
77 (Rto = 0.1109) 
64(Fo>2.0o(Fo)) 
14 
R= 0.0277 wR = 0.0612 
R= 0.0367 wR = 0.0647 
1.187 
4.5:1 
1.460 e/A  ̂

-1.546 e/A  ̂

Table 5.7: Positional Parameters and Occupancies for EuAuojsAla^5 

Refined Conqx)sition: EuAuo.tsAIs  ̂
a= 4.318(1) A 
c= 11.165(2) A 
Space Group I4/mmm (No. 139) 

Atom WyckofF x y z occ. Ueq 

Eu 2a 0 0 
All 4d -0.5 0 
A12 4e 0 0 
Au2 4e 0 0 

0 1.0 0.015(1) 
0.25 1.0 0.014(2) 
0.3967(28) 0.610(9) 0.013(2) 
0.3764(4) 0.390(9) 0.013(2) 
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Eu(2a) 

Figure 5.7: The structure of EuAuo.tsAIs ,̂ with Eu atoms (large open circles) 
surroimded by 18 vertex pol^iiedra conqMsed of 8 All (Ad) atoms (small open 
circles), and 10 Au2/A]2 (4«) atoms (gray circles). The average position of the 
Au2 and A12 atoms is shown in the figure at (0,0,0.3865). The distances within 
the structure are; Au2-A12= 2.53(3)A, Au2-Au2= 2.759(8)A, A12-A12= 2.31(6), 
Au2-All= 2.580(2)A, A12-A11= 2.71(2). The Eu - Au2/A12(avg) distances are 
3.305(2) A and 4.315(1)A, and the distance between Eu and All is 3.5288(5)A. 
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of the Au2 and A12 atoms, and an atteaq)t to refne the data in the space groiq) I4mm 

(BaMSns structure type) was unsuccessful It is possible that long term annealing of the 

sanq)le may aDow for the ordering of the Au2 and A12 atoms. Figure S.8 contains three 

possible 'colorings' of a BaAli network with Au and A1 atoms, and the theoretical powder 

patterns for three possible ternary structures are given in Figure 5.9. Figure 5.9 (a) is the 

pattern for the refined structure EuAuAU (J4/mmm), with no ordering of the Au - A1 

'pairs'. Figure 5.9 (b) is the pattern for the ordered EiiAuAIs (BaNiSns I4mm), which 

differs only slight  ̂fix>m the pattern for the observed structure (a). Figure 5.9 (c) is the 

pattern for EuAuaAlz forming the CaBe2Ge2 structure (P4/nmm), which differs 

significantly from the other two patterns. 

Electronic Structure Calculations on EuAuAh 

The electronic structure of EuAuAls was investigated using extended Hiickel 

calculations. The Eu atoms were treated as classical electron donating cations, due to the 

long Eu - All (3.5287 A) and Eu - Au2/A12 (3.3056 A, and 4.3158 A) average distances, 

and therefore no orbitals of Eu were mchided. Similar to the electronic structure 

calculations of E)y3Au2A]9, the first calculation on an all ahmrimim framework 

(J[Al4]°~), was used to indicate which positions the more electronegative Au atoms 

would be most likety to occiq)y based on the MuDiken populations. For an electron count 

qjpropriate for EuAuo.tsAIj  ̂(12.5 electrons / formula unit), the two sites A12 (4e), and 

All (4d) had MuUiken populations of 3.419 (A12) and 2.831 (All), and for an electron 

count impropriate for EuAuAls, (12 electrons / formula unit), the populations were 3.243 

(AJ2) and 2.757 (All). Since gold is the more electronegative of the two elements (Au: 

2.4 and Ah the gold atoms preferentially occiq>y the sites with the greater 

MuUiken population, A12. The structure refinement of EuAuo.tsAIs  ̂ indicated a mixture 

of 61(1)% aluminum and 39(1)% gold on the 4« positioiL. 

In the same manner that we «camined the preference for homoatomic (Au - Au, A1 

- Al) or heteroatomic (A1 - Au) contacts in Dy3Au2Al9, we considered them in the 

EuAuAls conq}ound as well In Table 5.7 the total energies for three different gold-
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EuAuAla - BaAU 
I4/mmm 

EuAuAla - B^iSn3 
I4mm 

E11AU2AI2 - CaBe2Ge2 
P4/nmm 

Figure 5.8: Three 'colorings' of a BaALt framework. The first coloring (left) is the refined EuAuAlj structure with disorded Au -
A1 'pairs'. The middle coloring is EuAuAlj forming the ordered BaNiSna structure, with all the Au - A1 'pairs' aligned in 
the c direction. The third coloring (right), is EUAU2AI2, adopting the CaBe2Ge2 structure type. The small open circles are 
the A1 atoms, the gray circles are the Au atoms, and the large open circles are the Eu atoms. 



www.manaraa.com

99 

(a) 

, 1 1 , i II 1 1 1 ' ' ' ' j • ' • I j ' 1 ' ' I 1 » 1 ' j i • » • j ' ' i > I • I ' i j I I I I j 1 I t 1 j I I I 1 j 1 I I i j I i i i j I I I I I i' I I ( j I I 1 1 j I I 'i I j I "i"; "i 'j' r t ( t 

10. 20. 30. 4.0. 30. 60. 70. 80. 

(b) 

10. 20. 30. 40. 50. 60. 70. 80. 

(c) 

1 1 1 1 ll I 
1 I t 1 1 I t 1 I 1 1 1 1 1 1 I i 1 1 1 I I 1 1 1 1 " 1 1 1 i 1 t 1 1 1 t 1 1 1 I 1 1 1 j I 1 1 1 j 1 1 1 1 1 » 1 » » 1 ' » • ' 1 ' ' ' ' 1 ' ' ' ' 1 • ' ' ' j ' ' ' ' ] ' ' • * 

10. 20. 30. 40. 50. 60. 70. 80. 

Figure 5.9 (a) The generated powder pattern for EuAuAla as refined in I4/mmm. (b) The 
pattern of ordered EuAuAls, forming the BaNiSns (J4mm) structure, (c) The 
pattern of EUAU2AI2 forming the CaBe2Ge2 structure iP4/nmm). 
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ahimiimm arrangements are listed, including the overly popiilations for the different 

interactions. There is an energetic preference for heteroatomic Au -A1 contacts in 

EuAuAb, just as there was in Dy3AibAl9. The structures with heteroatomic contacts 

(calculations 2 and 3) have lower calculated total energies than the structure with 

homoatomic contacts (calculation 1) by 0.21 eV / formula unit. The conplete unit cell 

contains 2 formula units, which means that within a unit cell the heteroatomic (Au - Al) 

contacts can be ordered, such that tbey are aligned in the same direction (BaMSns : 

14mm), or such that they alternate. In the case of EuAuo.tsAU^s, no evidence for the 

ordering was observed, and the calculated total energies are very similar, with the ordered 

structure (calc. 3) &vored 0.0036 eV versus the disordered structure (calc. 2). 

Table 5.7: The results of extCTded Huckel calculations on EuAuAb, in which the Au and 
AI atoms are arranged such that there are either homoatomic (Au - Au, AI - Al) or 
heteroatomic (Au - Al) contacts. 

type of contacts total energy (46 e") 
on (4«) (eV / formula unit) overly populations 

1. homoatomic -284.9482 Au-Au 0.7746 
(Au-Au, Al-Al) A1-A10.4015 

2. heteroatomic -285.1541 Au-Al 0.5912 
(Au - Al altemating*) 

3. heteroatomic -285.1577 Au-Al 0.5926 
(Au - Al ordered**) 

* alternating: the Au - Al contacts are arranged in an alternating pattern along c. 
** ordered: all the Au - Al contacts are arranged in the same direction along c. 
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Figure 5.10 contains the DOS curve for the disordered EuAuAls structure, and the COOP 

curve for the Au2 - A12 heteroatomic contact (4e) at 2.533 A, with two Fermi energies 

marked (44 e" (Eu"^^) and 46 e' (Eu*^)). In the DOS curve there is a narrow band between 

-16.0 and -14.0 eV corresponding to the Au d-orbitals, and a gap in the DOS above the 

Fermi energy between -5.0 and -4.0 eV (refer to Table 5.5). As observed in the 

calculations of Dy3Au2Al9, the Fermi energy &l]s at the crossover between bonding and 

antibonding levels for the Au2 - A12 (4e) contact with an average distance of2.533 A. 

The con^unds LaAuAla and SmAuAb have been synthesized, and characterized 

by powder X-ray diffiaction. The refined lattice parameters of LaAuAb are: a = 4.355(1) 

A, c 10.887(1) A. From the powder patterns, these phases appear to be isostnictural 

with EuAuAk. Howev ,̂ siogle crystal sohitions need to confirm the conqx>sition and 

distribution of Au and A1 within these conqwunds. 

Conclusions 

These ternary phases demonstrate the delicate balance between the Actors which 

influence the coiiq)osition and observed structure for a particular compound. The two 

Victors which appear to be most influential in these ternary gold-ahoninides are size and 

electron count. The LnAU con^unds (except EuAU) do not form the BaAU structure 

type because their vec of 3.75 is too high. Instead, they form a - LnjAlu, at low 

tenq)eratures (Ln = La, Ce, Pr, Nd), and P-LnsAln at high tenq)eratures, (LrOojsAls.e?, 

vec = 3.5) which is the tetragonal BaAU structure type with ordered vacancies. The 

icchision of gold into these conqwunds results in the lowering of the vec, from 3.75 

(LnAU), to 3.25 (LnAuAb). I have observed the larger (La, Eu, Sm) rare-earth atoms in 

a disordered BaAU structure type, and HuUiger et aL have reported LnAu^AU-x (x = 1-1.5, 

Ln = Lar-Tb) with vec = 3.0-3.25, and LnAUxAl4.x (x = 1.5-2, Ln = Lar-Tb) with vec = 

2.75-3.0, which form the BaAU, BaNiSns, and CaBe2Ge2 structure types. 

Upon moving to the smaller rare-earth atoms (Gd - Yb), in combination with gold 

and ahmiinum, MMe the electron count is £^)propriate (Le. vec < 3.5) for the formation 

of the BaAU structure, the a - LasAln structure is observed. This structural change is 
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Figure 5.10: Left: (a) The DOS curve for the J[AuAl3]°" framework of EuAuAIs, with 
the Fermi energies of -6.51eV (44e* Eu^^) and -6.13eV (46e' Eu^^) marked by the 
dotted lines. Right: (b) The crystal orbital overly population curve fijr the Au -
A1 interaction, showing the neaxiy optimal ffllmg of bonding orbitals (+), and 
leaving unfilled the antibonding orbitals (-). 
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presumably driven the preference of the smaller rare-earth atoms for the smaller cages 

in the DysAuzAk structure. 

bi both groups of ternary gold ahiminides forming structural variants of BaAl4 and 

a - LasAlii, electronic structure calculations indicate the preference for gold atoms to 

occiq>y the short contacts between the layers, and the preference for heteroatomic Au - A1 

contacts. Further synthesis and electronic structure calculations could fijrther explore 

these conclusions about the importance of rare-earth atom size, and vec. 
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CHAPTER 6 

STRUCTURE SORTING BY USING 
SECOND MOMENT SCALING 

Introduction 

The HQckel(H)and extended Hilckel (eH) tight-binding methods have been applied 

very successful  ̂to many questions involving electronic structure and orbital interactions 

within molecules and extended solids.̂ "'̂ '̂̂  Due to the sinq)licity of the one-electron HQckel 

method, it has been {qjplied to a remarkabty wide range of systems, with an even more 

remarkable success and utility. However, because these calculations explicit  ̂ ignore 

electron-electron repulsion, their application has been seriously limited. In particular, one 

must be careful when using the calculated Htickel energies to conq)are the relative stabilities 

of conqmimds with different structures, because these calculations have an inherent bias 

givoring structures with more highly coordinated atoms. Because no repulsion energy is 

considered in the calculation of the total energy, the structure in the atoms are more 

highly coordinated will natural  ̂ have a lower energy. For exann^le, while at room 

tenq)erature, gr^hite is more thermodynamically stable than diamond by 1.9 kJ/mol, a 

tight-binding calculation of the total energies of diamond (coordination number (CN) = 4, C-

C distance = 1.545 A) and gr^hite (CN = 3, C-C distance = 1.415 A) results in diamond 

being &vored by leV / atom (leV = 96.5 kJ / mol). 

However, if the coordination numbers and bond distances of the molecules (or 

tended structures) to be conq)ared are equal, then the difierences in the H Clergies can be 

used as reliable predictive tools. This is because the repulsive energy for structures with 

equivalent bond distances and coordination numbers is the same, allowing the differences in 

the H energies to noore accurate  ̂reflect the differences in stability. For exanq)le, in the AB2 

systems (^diere both A and B are main groi  ̂atoms), H calcuktions do correctly account 

for bent or linear molecular geometries.̂ ^ '̂̂ ^  ̂This is a very ini^rtant result for two reasons, 

(1) it suggests that repulsive enei  ̂is a function of nearest neighbor interactions (Le. first 
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coordinadon sphere), and (2) if the repulsive energies of structures with different 

coordination numbers and bond distances could be made equivalent, then the calculated H 

energies would be conq)arable.̂ ^ '̂ It has been shown that the r^ulsive energy for different 

structures can be equalized by scaling the second moments of deferent structures to a fixed 

value. For a con^lete discussion of the theory and development of second moment scaling 

see references [63-65]. 

The second moment (^2) is defined as, 

^2=lg,Ef (1) 

where N is the number of molecular orbitals and Ej is the energy of the ith orbital'"  ̂

Qualitative ,̂ the second moment is a descr^on of the first coordinatioon sphere of the 

atoms in a structure, and the size of the second moment is a measure of the 'coordination 

strength' of the atoms. Diamond has a larger second moment than graphite because the 

atoms in the diamond structure are more highly coordinated than the atoms in graphite. By 

scaling the second momeirts of conqmunds with different structures (like diamond and 

graphite), the bias of the Hiickel calculations can be eliminated since the 'coordination 

strengths' of the two structures are equalized. The second moments of conqx)unds having 

different structures are scaled to an intermediate value. After scaling, the HQckel energies of 

these adjusted structures can be calculated and compared. 

In this series of calculations, the HQckel energies are calculated for electron counts 

from 0 to 8 (s and p) or fix>m 0 to 18 (s, p and d) and are conq)ared as a function of vec. 

Using this method, various structures can be sorted (or separated) into ranges of vec for 

^ch any particular structure is &vored. Second moment scaling has been successfully 

^plied to many groiq)s of structures, inchiding elemental structures,̂ ^  ̂the Hume-Rothery 

phases,̂ ^  ̂and main groiq) intermetallics,̂ '̂̂  with excellent agreement between calculated and 

observed results. In £ict, second moment scaling calculations were able to separate 7 

different Hume-Rothery phases into narrow lianges of vec betweeb 1 and 2 >^ch were 

nearly identical to the ranges for the observed con^unds. 
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As detailed in the previous clusters, the majority  ̂of my ^mthetic efforts has focused 

on making new ternary conqmunds with vec between 2 and 4, coupled with the investigation 

of the electronic structures of these con^unds, all in an effort to understand certain 

aspects of their formation and stability. Among the multitude of &ctors v^iiose deUcate 

balance results in the observation of a particular structure type for any one conq)ound, the 

vec is undoubted  ̂an inqwrtant contributor. With the successful separation of the Hume-

Rothery phases using second moment scaling, we decided to use second moment scaling to 

try to separate intermetallics with vec between 1 and 4. The structure-types included in this 

series of second moment scaling calculations wiU be discussed in the next section of this 

ch^ter. 

Structure Types Chosen for Second Moment Scaling 

The structure types inchided in this series of second moment scaling {sms) 

calculations are: NaZnu, ThNfiiu, BaCdu, BaN^Ab, MoAln, and (see Table 6.1). 

the exception of M0AI12,1 have observed all of these structure types in the synthesis of 

ternary aluminides, and the majority of these aluminum-rich conqwunds have vec between 2 

and 4. M0AI12 was included because the structure contains Mo-centered, interconnected AI12 

icosahedra, and is similar to the NaZnu structure. Table 6.1 includes a variety of ternary 

aluminides >»^h form each of the structure types, and the \ec for each of these cons^unds. 

Many of these exanples are new ternary con^unds which I have made and characterized. 

However, Pearson's Handbook of Crystallographic Data for Intermetallic Phases 

inchides many more exanq)les of conq)ounds >^ch form each of these structure types, and 

ranges of vec for each structure type were con^jiled fix)m the vec's of all of the observed and 

reported conqwunds. Figures 6.1- 6.6 are representations of the six structures with the 

lattice parameters used in the sms calculations. 

The vec is calculated by adding the nimiber of valence electrons per atom in the 

formula unit, and dividing by the total number of atoms. These ternary aluminides, like the 
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Table 6.1: The structures included in the second nioment scaling calculations, and the ranges of vec for observed compounds. 

Structure Type number of 
ternaries 

range of 
vec (s & p) 

number of 
binaries 

range of 
vec (s & p) 

examples of 
aluminide phases 

vec 
(s&p) 

NaZnis 15 2.21-2.38 36 2,08-2,23 BaCusM * 
SrCu6Al7 • 
BaAgs.jAlys * 

2.38 
2.23 
2.30 

ThMni2 42 
13 
9 

0.9-1.55 
2.58 
2,25 

14 
8 

1.5-2.08 
2.25 

LnCutM 1 
LnCusAly * 
LnCu6A]6 

2.58 
2.41 
2.25 

B^izM 7 2,27-2.636 0 SrNizM 
BaFe2Al9 
EUC02AI9 • 

2.64 
2.27 
2.45 

BaCdii 4 
10 

2.10-2.27 
0.2-1.2 

10 2.18-2.27 EuAgsAle • 
LaAgsAU • 
EuYbAgi2Ali4 

2.27 
2.36 
2.27 

M0AI12 0 6 2.66-2.75 WA1,2 
MnAlia 

2.66 
2.75 

K4Si23 25 3,5-4.2 4 4.17 Ba4Cu3Ge2o 
Ba4Ag3AlioSiio • 
KgAlzaSiza 

3.96 
3.52 
3.67 

* indicates the compounds I have observed and characterized 
t Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, Y 
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NaZnis 
CF112 - Fm^c or =12.205 A 

2 atomic positions 
(8b) 0,0,0 
(960 0, y, z (y = 0.117, z = 0.175) 

BaCusAlg SrAgs.5Al7.5 
EuCU(.sA]6.S LaCueAl? 

vec = 2.2 - 2.4 

Figure 6.1: The NaZuis structure, observed for BaCusAlg and other ternary alumindies. 
The structure contains a fiamework of interconnected centered-icos^edra, which 
form 24-vertex snub cubes around the Na atoms. 
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ThMni2 
tI26 - I4/mmm a = 8.705 A, c = 5.128 A 

3 atomic positions 
(8f) 0.25,0.25,0.25, 
(80 X, 0,0 (x = 0.346) 
(8j)x, 0.5,0 (x = 0.281) 

LnCiuAlg LnCusAl? LnCu^Ale 
Ln = (Y, Ce - Lu) 

vec = 2.1 - 2.6 

Figure 6.2: The body centered tetragonal ThMhu structure, observed for many rare earth 
copperahmunides,LnCuxAli2-x (4<x<6). 
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BaNi2Al9 

hP12 - P6/inimn a = 7.93A, c = 3.96 A 
3 atomic positions 

(2c) 0.333, 0.666, 0 
(3Q 0.5,0, 0 
(6m) X, 2x, 0.5 (x = 0.213) 

SrCo2Al9 EuFejAb BaFczM 

vec range = 2.3 - 2.65 

Figure 6.3: The Ba>n2Al9 structure (hP12, P6/mmm): the large open circles are Ba atoms, 
the smaller dark gray atoms are Ni, and the samU light gray atoms are Al The Ba 
atoms occiq)y la  ̂hexagonal channels along the c-direction. The Ni atoms are 
coordinated by 9 Al atoms in a tri-ci^ped trigonal prism, with 6 - Al distances 
of2.5792 A, and 3 Ni - Al distances of2.2892 A. There are two atomic positions 
occupied by Al atoms. All atoms are coordinated by 2 Ni atoms with distances 
2.2892 A, and 6 Al atoms with distances of 2.8476 A A12 is coordinated by 2 Ni 
atoms at distances of2.5792 A, and 6 Al atoms at 2.8476 A and 2.8627 A 
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BaCdii 

tI48-I4i/amd a= 11.055A, c = 7.116 A 
3 atomic positions 

(8d) 0,0,0.5 
(4a) 0, 0.25, 0.635 
(320 y> z ( X = 0.123, y = 0.205, z = 0.308) 

EuAgsM LaAg$Als 
EuYbAgi2Alio 

vec range = 2.1 - 2.3 

Figure 6.4: The structure of BaCdu (tI48,14i/amd): the large open circles are Ba atoms, 
and the darker and lighter gray circles are the Cd atoms. For the coo^und 
EuAgsAU, the light gray circles are the A1 and Ag atoms form a network of 
tetrahedra which surround the Eu and Al/Ag atoms. Each A1 atom is coordinated 
by 5 other A1 atoms at distances between 2.660 A and 2.802 A 
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M[oA1i2 

cI26- Im3 a = 7.582 A 

1 atomic position 
(24g) 0, y, z (y = 0.1854, z = 0.3083) 

MnAli2 WA1i2 ReAli2 

vec range = 2.66-2.75 

Figure 6.5: The structure of M0AI12 (cI26, Im3): Mo atoms (not shown) center each 
AI12 (small \^^iite atoms) icosahedion. The distance between the Mo atom and the 
12 A1 atoms is 2.726 A, and the distances between A1 atoms are 2.78 - 2.88 A. 
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^Si23 
cP54- Pm'in a =10.30 A 

3 atomic positions 
(6c) 0.25,0,0.5 
(160 x.x»x» (x=0.185) 
(24k) 0, y, z, (y = 0.306, z = 0.118) 

Ba4Cu3Ge2o Ba4Ag3AlioSiio KgAlzsSibs 
Na8Ga23Sn23 KgSn23ln23 K4Ga.7Sii6 

vec range = 3.5 - 4.2 

Figure 6.6: The structure of K4Si23 (cP54, Pm3n): the large open circles are K, and the 
smflll gray circles are SL Each Si (gray) atom is tetrahedralfy coordinated by other 
Si atoms with distances between 2.413 - 2.488 A. The K atoms occupy 24-vertex, 
and 20-vertex poljtedra. 
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majority of the Hume-Rotheiy and Zintl phases, are con^unds with s and p metals for 

^ch a vec between 0 and 8 is appropriate. This mchides the late transition metals (Le. Ni, 

Cu, Zin) for ^ch the d-orbitals are treated as Med 'core' orfaitals. Using this counting 

scheme, has 0 valence electrons (ve), Cu has 1 ve, Zn has 2 ve, A1 has 3 ve, and so on. 

In these con^unds however, as in the eH calculations in previous ch^>ters, the 

electropositive metal atoms donate their valence electrons to the framework, but are not 

inchided in the total number of atoms. For example, the vec of BaCusAlg is: (2 + 5 + 24)/13 

= 2.38. 

Besides those structures listed in Table 6.1, several other structure types were 

considered for the sms. These were CaCus and two CaCus structural derivatives, Tl^Nii? 

and Th2Zni7. The synthesis of temaiy aluminides in these structure types will be discussed in 

chapter 7, but the conq)arison ofthese structures using sms is included here. 

In ch^er 5, several new ternary gold aluminides winch form derivatives of the 

BaM structure were introduced. We believe the vec plays a very in^ortant role in the 

formation of the BaM and a-LasAlu structure types for the rare eartb-gold-ahuninide 

con:q)ounds. The 5m.; of these two structures wiU be presented and discussed in this ch^ter. 

Finalfy, in chqiter 3 the structural and conqpositional relationsh  ̂between LnCu4A]s 

(ThMiu) and CuAJb was introduced. If the Ln atoms are considered classical cations (Ln^^), 

then the vec/network atom for the J[Cu4Alg]  ̂framework of LnQuAU (vec = 2.58) is 

greater than the vec for CuAb {vec = 2.33). If these two structures are compared using sms, 

one would expect to see the LnCutAU structure type &vored at higher vec than CuA]2. 

Similar ,̂ the Hume-Rothery phase CusZng has structural features reminiscent of BaCusAlg 

(NaZnu). And if these two structures are scaled, the BaCusAls (yec = 2.38) should be more 

stable at a higher vec than the CusZns (yec = 1.61). These scaling results will be included at 

the end of this chapter. 
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Practical Considerations of the Second Mom^t Scaling Calculations 

The introducticnto this chsqpter presented the motivation for scaling structures and it 

is clearfy inqx)rtant to understand how these calculations are actually performed. Second 

moment scaling calculations are performed on homoatomic structures, (Le. a single atom 

type located on every atomic position). The second moment for each structure is calculated, 

then scaled to a fixed intemoediate value, and then the Huckel energies are recalculated 

iising the 'scaled' structures. Two of the most in^rtant considerations in the sms 

calculations are: (1) the choice of atomic orbital parameters (2) the extent to M^h a 

structure can be scaled and still yield meaningfol results. 

The first of these considerations is made conq)Iex by the variety of elements \s^ch 

are involved in the binary and ternary confounds adopting these structure types. In 

particular, it is difficult to model ternary conqwunds (like BaCusAlg) containing a network of 

at least two kinds of atoms with onl  ̂a single set of atomic orbital parameters. For exanq>le, 

consider the two conqwunds BaCusAlg and LnCu4Al8, forming the NaZnn and ThMni2 

structiires respective .̂ In BaCusAlg (Na2 î3), the network of interconnected stuffed 

icosahedra is ''colored" by a random arrangement of copper and ahmunum atoms, ^^diich 

may conceivabty be modeled with a single type of atom ^^se atomic parameters lie 

between those for A1 and Cu. In LnCu4Al8 (ThMhu) however, the network of copper and 

aluminimi atoms is ordered, making the selection of a single set of atomic parameters for the 

network more difficult. 

In previous calculations which scaled the elemental structures fix)m Cu (yec = 1) 

through Se (yec = 6), germanium atomic orbital parameters were chosen since they lie 

midway between the parameters for the end points of the series (Cu and Se).̂ ^  ̂ Using 

germanium atomic orbital parameters for each of the structure types, the sms results 

correlated nicety with the observed structural preferences. While this is not proof that using 

germanium parameters was the best choice, it does seem that their selection is reasonable. 

Germanium parameters were also used in the sms calculations of the Hume-Rothery phases. 

Due to their mid-range atomic orbital energies and sizes, germanium parameters were used 
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as a staiting point for the sms calculations on the structures listed in Table 6.1. The effects 

of the calculation results upon changing the atomic orbital parameters to those of Ga, and 

also &om the addition of a low l^dng 'd-orbital core' win be discussed brie  ̂later. Table 6.2 

lists the atomic orbital energies and orbital exponents for those elements used in this series of 

calculations. 

Table 6.2: The atomic orbital parmeters used for the second moment scaling calculations.̂  ̂

Element Atomic Orbital Hu(eV) 

Ge 4s -16.00 2.16 
4p -9.00 1.85 

Ga 4s -14.58 1.77 
4p -6.75 1.55 

A1 3s -12.30 1.37 
3p -6.50 1.36 

The second consideration of practical in^rtance in the sms calculations is the 

actual scaling itself The premise of scaling the second moments of structures to a fixed 

vahie is to eliminate the bias the H and eH calculations have for structures with atoms with 

higher coordination numbers. The process of scaling the second moments involves actual  ̂

conq)ressing or e}q)anding the various structures (slightfy) in order to increase or decrease 

the 'coordination strengths' of the atoms in the structures. Technically this is accomplished 

by increasing or decreasing the unit cell volumes, therein lengthening or shortening distances 

within the structures, v«^ch corre^nds to increasing or decreasing the second moment In 

reference to the earlier exanq)le involving graphite and diamond, grs^hite (CN = 3, 1.415 

A) would be compressed and diamond (CM = 4, 1.544 A) would be e}q)anded in order to 

scale the two structures to a second moment value midway between the two. The e3q)ansion 

or conq)ression of the structures occurs isotropicalfy, (ie. maintaining the c/a ratio for a 
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tetragooal structure), and wfafle the distances between atoms are changed slightly, the bond 

angles remain unchanged For this reason, it is unreasonable to scale structures with widefy 

varying second moments, due to the large changes in bond distances and unit cell vohimes 

that would result As a general rule, for con:q)arisons of scaled structures to be valid, the 

structures should be scaled no more than 10-15 % of their respective second moments. 

For exanqile, it would be unrealistic for two structures with second moTnents of 100 and 

200, to be con:q)ared using sms calciilations, because the scaling (to 150) is well outside the 

10 -15 % guideline. However, the scaling of two structures with second moments of 200 

and 210, (scaled to 205) would result in a modification of onfy 2.5% of their second 

moments. 

Second Moment Scaling of Aluminum-Rich Con^unds Using Ge Parameters 

Table 6.3 contains a list of the calculated second moments and the scaled second 

moments of each of the structures in Table 6.1, calculated using Ge parameters (see Table 

6.2). For example, using the lattice parameters and atomic positions for BaCusAlg (NaZnis), 

"Gei2" was calculated for all electron counts between 0 and 8. Due to the wide range of 

calculated second moments, all six of these structures could not be scaled to a single second 

moment (and be within the 15% scaling guideline), so the structures were split into two 

groiq)s. The &ct that the second moments of the NaZnis and ThNfoi2 structures were so 

similar indicated that it would be £q)propriate to scale these structures to the midway value of 

369.0, ^ch means a compression of 1.5% for NaZn  ̂ and an e}q)ansion of 1.5% for 

ThMQi2. The second moments of M0AI12, BaCdu, K4Si23 and BaNi2Al9 were all scaled to 

287.0, even though the second moment for BaN^Alg is rather different firom the second 

moments of the other three. 

Results 

The total energies of the scaled structures are calculated via the Huckel method, and 

the energies are con:q)ared as a function of vec per atom. Figure 6.7 is a plot of the results 

from the scaling of NaZnu and ThMhu to a second moment value of369.0. The difference 
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Table 6.3: Calculated and scaled second naoments for the structures in Table 6.1, using Ge 
parameters (4s = -16.0 eV (2.16), 4p - -9.0 eV (1.85)). 

Structure Calc. Second Moment Scaled Second Moment 

NaZnis 364.03 369.0 
ThMni2 376.98 369.0 

Bal^uM 337.91 287.0 
BaCdii 295.62 287.0 
K4Si23 295.49 287.0 
MoAlu 280.11 287.0 

in energy between the two structures is plotted versus vec per network atom, with the 

NaZnia energy values as the reference at AE = 0. The curves can be interpreted as follows: 

for any particular vec, the curve y^ch is higher (Le. AE is most positive) has the lower total 

energy, and is therefore predicted to be the more stable structure. That means the ThMn  ̂

structure (dotted curve in Figure 6.7), is fevored for vec's above 0.75, although the 

difference in energy between the two structures is small in the region of vec 2.0 - 2.6. 

In the second series of sms calculations, MoAlu, BaGln, KtS  ̂and BaN^Al? were 

scaled to 287.0, and their relative energies are plotted in Figure 6.8. BaNibAlo was chosen as 

the ref^nce for this series, and as before the curve ^ch has the most positive AE at any 

particular vec is the most stable structure type. From vec 0 to 1.6 the BaNi2Al9 structure has 

the lowest total energy, and as the vec increases, this calculation predicts that for vec 

between 1.6 - 2.55 , the BaCdn structure is the most stable, and from 2.55 - 2.8 the MoAlu 

structure is &vored, and above vec 2.8, K4Si23 is strongfy &vored The separation of the 

BaCdii, M0AI12 and K4Si23 structures agrees with the ranges of vec for the observed 

compounds, as given in Table 6.1, and shown in Figure 6.8 by the heavier black lines above 

the curves. 
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Figure 6.7: The energy difference between NaZnu and ThMhu scaled to 375, using Ge 
parameters. The solid line is the calciilated energy fer the NaZnis structure which 
is set at zero, and the dotted curve is the energy difference between the ThMn  ̂
structure and the NaZnn structure. The ThMhu structure is predicted stable fer 
vec above 0.6. 

10 

8 

6 

MoAli 4 BaCd, 

2 

0 

-2 

-4 
3 4.5 0.5 1 2 2.5 3.5 4 0 1.5 

vec / network atom 
[observed ranges ] 

Figure 6.8: The energy differences between M0AI12, BaCdn, BaNiaM and K4Si23 scaled 
to 287, using Ge paran3eters3aN^Al9 is predicted most stable for vec 0 - 1.5, 
BaCdii is predicted stable for vec 1.6 - 2.55, M0AI12 is &vored fix)m vec 2.55 -
2.8, and KtS  ̂is predicted stable for vec above 2.8. There is good aggrement with 
the observed vec ranges (as marked by the lines above the structure types) for all 
the structure types except BaNijAlg. 
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Second Moment Scaling Calciilations Using Ga Parameters 

Figures 6.7 and 6.8 are the separations of structures based on vec for homoatomic 

calculations performed with Ge parameters (see Table 62). As mentioned previous ,̂ the 

choice of parameters is an in^rtant &ctor is the sms calculations, and the selection of 

appropriate parameters is especial  ̂difScuk in this series, because the con^sitions of the 

observed phases are quite varied. Two of the structures, M0AI12 and Bah^M are true 

ahnninide phases, and are not observed for ai  ̂other main group element as the majority 

conqranent, but there are onfy three aluminum-rich con^unds known for the BaCdn 

structure. With this in mind, the sms calculations were repeated with a variety of atomic 

orbital parameters to examine the sensitivity of the results to changes in orbital energies and 

orbital exponents. Table 6.4 contains the calculated and scaled second moments with Ga 

parameters. Figures 6.9 and 6.10 plot the results of the sms calculations with the energy 

differences between the structures as a function of vec. 

Table 6.4: Calculated and scaled second moments for the same groups of structures using 
Ga atomic orbital parameters. (4s = -14.58 eV (1.77), 4p = -6.75 eV (1.55)) 

Structure Second Moment Scaled Second Moment 

NaZnis 532.23 539.1 
Th^foi2 547.38 539.1 

BaCdii 437.30 401.0 
K4Si23 365.80 401.0 
M0AI12 426.09 401.0 
BaN^M 486.44 401.0 

The sms results are ?«mTlar with the Ge and Ga atomic orbital parameters, but there 

are some differences. With Ge parameters, the ThMhn structure is predicted to be the stable 

structure type for the vec range of the observed structures (2.0 - 2.6), however, with the 

Ga parameters, the energy differences between the ThMiu and NaZnis structures in the 
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Figure 6.9; The energy difference between NaZni3 and ThMhi2 plotted as a function of 
vec, scaled to 539, using Ga paranaeters. The energy Na2^i3 is set at zero and the 
dotted curve is the energy difference between ThMhu and NaZnis. 
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Figure 6.10: The differences in energy between M0AI12, K4Si23, and BaCdn, 
scaled to 401, using Ga parameters. The agreement between the observed ranges 
of vec for known con|)oxmds and predicted ranges of stability is pretty good for 
BaCdii and KiSiza, as shown the straight lines above the curves. However, the 
separation of all four of the structure types using Ga parameters is not as 
successful as with the Ge parameters (Figure 6.8). 
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critical region of vec fix)m 2.0 to 2.5 are very small. The results of this calculation are not 

suiprisiDg, based on yiiat we already know about these two ^rstems of ternary ahnnimdes 

ftom synthesis and eH calculations. In the second moment scaling calculations the ThMhu 

structure is predicted to be stable throughout the majority of the vec range 1-3, but there is a 

small section between vec 2.05 and 2.125 for which the NaZ^n structure is &vored, and 

again above vec = 2.55. T\^thin the error of the calculations (± 0.04 eV), there is no 

difference between the two structures for the vec ranges 2.0 - 2.5, and in &ct, both 

structures are observed within that region, refer to Table 6.1. As discussed in chapter 3, 

there are other &ctors besides the vec >^ch contribute to the formation of either the 

ThMni2 or the Na2^i3 structures, and the role of the electropositive metal atoms was 

discussed at length. It was discovered that the orbital overlaps between the Ln atoms and the 

fi-amework atoms in LnQuAlg (ThMQi2) was significant in determining the ordering of the 

Cu and A1 atoms. Clearfy this effect is not considered in these calculations, because the 

electropositive metal atoms are not included. 

The scaling results of the four structures, MoAlu, BaCdn, K4Sib3 and BaN^Ak in 

Figure 6.8 and 6.10 are similar, but the separation of the structures with Ge parameters is 

better. Using Ge parameters and scaling the structures to 287, the separation of M0AI12, 

BaCdii and K4Si23 was in excellent agreement with the observed ranges of vec. 

Second Moment Scaling of Two CaCus Derivatives: Th2Nii7 and Th2Zni7 

The hexagonal phase CaCus has four structural derivatives: ThMn ,̂ ThzNin, 

Th2Zni7, and PusZife. TlfeMi? and Th2Zni7 are very closely related structure types ^^ch 

will be discussed in detail in ch^ter 7. Many ternary trielide phases have been reported 

forming one of these two structures, particular  ̂in the rare earth-silver-aluminide systems 

Li)2AgxAli7-x (Ln = La....Yb). The general (although not exchtsive) trend m the literature 

reports, as well as in loy synthetic observations of con^unds which adopt these two 

structures, is that the silver-rich con:p}unds (^^4lere x  ̂9) form the ThzZnn structure, and 

the aluminumrrich conqwimds (where x < 8) adopt the ThaNin structure, see Table 6.5. 
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From this point of view, the change in structure is related to the change in cortqwsition. 

From a sligfatfy different point of view however, this structural change could be based on the 

change of vec, with the silver-rich con^munds, forming the ThzZan structure havii  ̂a lower 

vec (s and p) than the aluminum-rich conqwunds forming the Th2Nii7 structure. Second 

moment scaling calculations could be veiy effective at investigating the differraces in 

energies between the two structures at different vec(s). 

Table 6.5: Literature reports of ternary ahiminides forming either the Tl^Nin or Tl^Zni? 
structure. For the s and p counting, Ag is s', and A1 is ^p\ For the s, p, and d 
counting, Ag is d^°s',Al is s^p  ̂(or more reasonabty, add 10 to the s and p counting). 

vec / network atom 

Composition Structure (s and p) (s, p and d) Reference 

Lai.8Ag6jAlio.5 ThzMiT 2.55 6.38 36 
Cei.gAg6.5Alio  ̂ Th2Nii7 2.55 6.38 36 
Pri.8Ag63Alio.5 TTfeNii? 2.55 6.38 36 
Ybi.gAg7Alio ThzlSTiiT 2.50 6.61 36 
La2Ag4Ali3 ThsNin 2.88 5.24 ch7 

La2Ag9.6Al7.3 Th22^i7 2.21 7.91 36 
Ce2Ag8.8AU  ̂ TlbZnp 2.32 7.49 36 
Pr2AgioAl7 ThaZnp 2.18 8.05 36 
Yb2Ag9Al8 ThaZnn 2.29 7.58 36 

The second moments of each structure were calculated "srng (a) Ge s and p 

parameters, and (b) Ge s and p, with a 'd-orbital core' at -30.0 eV, and are reported in Table 

6.6, with the values to wiiich the second moments were scaled. The results of both scaling 

calculations are shown in Figures 6.11 and 6.12. For the scaling with s and p orbitals onfy, 

(Figure 6.11) the sms separation of the structure types based on their vec is exactly the 

reverse of the observed separation, for the ternary abminides. The ThzJ^n structure is 

predicted stable for vec < 1.4, and the Th2Zni7 structure is fitvored for vec > 1.5, (see Table 

6.5). While these ranges in vec do not correspond to the observed ranges for the silver 
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ahimimdes, they do correspond to the parent con^unds themselves; CaCus, Th2Nii7 and 

TlteZnn. If Ni is counted as s°, Cu as s  ̂and Zn as s ,̂ then the predicted ranges are correct, 

including the "gmall vec range between 1.4 and 1.5 in the CaCus (vec = 1.4) is the most 

stable structure. 

Table 6.6: The calculated second moments for Tb2Mi7, Th22^i7 and CaCus, using (a) s and 
p Ge atomic orbital parameters, and (b) adding a d-orbital core at -30.0eV. 

Structure Type second moment scaled second moment 

(a) s and p Ge parameters (4s = -16.0 (2.16), 4p = -9.0 (1.85)) 

CaCus 371.94 359.75 

ThzNin 392.03 359.75 

Th2Zni7 327.50 359.75 

(b) Ge 4s and 4p, with d-orbitals at -30.0eV 

CaCus 665.62 665.0 

ThaNin 675.04 665.0 

ThaZnn 646.21 665.0 

While the Mure to separate the ternary aluminides correct  ̂is discouraging, there 

are several contributing &ctors viuch make the scaling of these structures difBcute. As 

discussed earlier, the choice of atomic parameters can be difBcuh for these temaiy phases, 

and in this case that is especial  ̂true. Aluminum has high fying unfilled d-orbitals, and the 

silver atoms have low fying filled d-orbitals. It is very difGcult to model the mixing of A1 and 

Ag atoms within a structure using a single set of 'pseudo-element' atomic parameters. 

Having noted this difSculty, we repeated the scaling with the inclusion of a low lying d- core 

at -30.0eV, see Figure 6.12. 
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Figure 6.11: The results of the scaling of TlbZnn, TlbNii? and CaCus with Ge s and p 
paranaeters. The Th2Nii7 structure is predicted to be stable from vec 0 - 1.2, and the 
Th2Zni7 structure is frivored from vec 1.3 - 2.6, with CaCus stable for a small portion of 
vec between 1.2 and 1.3, and above vec 2.6. 
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Figure 6.12: The scaling of CaCus, Th2Nii7 and TlfeZni? with the inchision of a d -
orbital core at -30.0 eV. The scaling predicts the ThzZni? structure to be &.vored 
between vec 10 and 13.4, and the CaCus structure is &vored between vec 13.4 and 
IS, but the ThzNin structure is never predicted stable between vec 10 and 15. 
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There is a distinct crossing of the two curves for Th2Zni7 and CaCus near vec 13.5, but 

now the structure is not &vored for aiQr vec. With the inchision of a low fying d-

core, the electron counting needs to be reconsidered. It is not reasonable to count electrons 

as Ag: d'°s\ and A1 s^p  ̂which results in partial  ̂filled d-orbitals (Le. vec < 10), see Table 

6.5. Rather, the A1 atonis should be counted as 'd'Vp '̂. This counting results in the same 

vec ranges as the s and p counting, with the addition of the filled d-^re (Le. vec fix)m 10 -

18). The ThzZnn structure is the more stable structure at vec betwe  ̂10 and 12.75, but the 

Th2^ni7 structure is not the &vored structure any>»^iere between vec 10 and 18. For a 

further discussion of some ternary aluminide confounds v^ch adopt these two structures, 

see chapter 7. 

BaAl4 vs. a - LasAIn 

The synthesis, characterization and electronic structures of several new ternary gold 

ahnninides which adopt variants of the BaM structure were introduced in chs^ter 5, and 

the in^rtance of the vec as a &ctor in the formation of these structures was discussed. 

Conqwunds involving main-group metals forming the BaAlt structure are restricted to vec < 

3.5. It was proposed that one of the reasons the LnM (except EuAU) conq>ounds do not 

form the BaAU structure is their vec is too high (LaAU = 3.75). The a - LasAlu structure 

is a derivative of BaAl4 in >x^ch a 'pair' of A1 atoms has been condensed to a single atomic 

position allowing for the con^sition LasAlu (vec = 3.82) and not 'La3Ali2'. A structural 

phase transition takes place at high temperatures, and the P-LasAlu structure forms the 

BaAU structure with an ordered vacancy (LaCHojaAls.e?, vec = 3.5). Second moment 

scaling calculations were carried out to examine the possible separation of these two 

structures into ranges of vec for ̂ ch their formation is &vored. Using Ge parameters, the 

second moments for the two structures were 235.3 for a - LasAln and 229.7 for BaAU, and 

they were scaled to 232.0, (see Figure 6.13). In this sms calculation, the a- LasAlu structure 

is the more stable structure for conqmunds with vec between 1.1 and 3.4, with BaA14 the 

&vored structure above vec 3.4. Using A1 parameters (see Table 62), the calcuJated second 
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moments were 223.07 for a - LasAlu and 226.6 for BaAU* and the structures were scaled to 

226.0, (see Figure 6.14). The scaling calculations with the A1 parameters again predicted the 

a-LasAln structure more stable for vec > 1.25. 

CuAl2 vs. LnCujAlg and CusZng vs. BaCusAU 

The two binary confounds CuA  ̂ and CusZng have similar conqrasitions and 

structural features as the two ternary ahuninides LnCu4Al8 and BaCusAlg respective .̂ The 

copper aluminum network in LnQuAU has the same conqwsition as CuAlz, and their 

structural rektionsh  ̂ was described in chapter 3. If the Ln atoms are treated as classical 

cations, and donate their electrons to the Cu/Al network, the vec network atom) is 

greater for LnCutAlg than for CuAb. These two structures were scaled using Ga parameters 

and the results are plotted in Figure 6.15. The CuAl2 structure is stable for low vec (< 0.75) 

and the LnCu4Al8 structure is stable at higher vec. Likewise, the CusZng and BaCusAlg 

structures were scaled using Ga parameters, and Figure 6.16 contains the results. Again, the 

CusZns structure is stable at low vec (< 1.45), the two structures have very similar energies 

between vec 1.45 and 1.75, and above vec 1.75 the BaCusAU structure is stable. In both 

cases, the ternary ahmunides in \^^ch the framework vec has been increased by the donation 

of the Ba and Ln valence electrons, are &vored at higher vec than the two binary phases. 

Conclusions 

The second moment scaling calculations were a useful addition to the electronic 

structure investigations of these aluminum-rich phases. The separation of the structure types 

based on vec was successful in some cases, and dis£Q>pointing in others, but this is not 

surprising. The Hume-Rothery electron phases are a unique groiq) of con^wunds for which 

the vec is one o  ̂if not the determining &ctor in the formation of those structures. Clearly 

the vec is one of many foctors which influence the formation of these ternary ahiminides, but 
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Figure 6.13: The results of second moment scaling of BaAl4 and a-LasAlu with Ge 
parameters. The a-La3Alu is predicted to be stable from vec 1.0 - 3.4. 
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Figure 6.15; The scaling of ThNfoia (LnCutAls) and CUAI2 using Ga parameters. The 
scaling confirms that the LnCu4Al8 (or J[Cu4Al8]  ̂ ), is predicted to be more 
stable at higher vec than CUAI2. 
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it may not always be the deteimining &ctor. If that is the case, then second moment scaling 

calculations alone cannot provide the 'answers' to the questions of structural preferences. 

Using second moment scaling in combination with the extended HOckel calculations, as well 

as creative synthesis and thorough characterization is probabty the most effective way to 

^>proach these con:q)lex systems. 
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CHAPTER? 

THE SYNTHESIS AND STRUCTURE OF TERNARY 
ALUMINIDES FORMING THE 

BaCdii, ErZzis, Th2Nii7 AND Th2Ziii7 STRUCTURES 

EuAgsA]  ̂ - BaCdii Structure type 

Synthesis 

The new ternary ahimimde EuAgsAJl6 was synthesized from the elements in an arc 

melting furnace, using the same synthetic techniques described in chs^ter 2. The products of 

reaction (1) contained the new ternary, EuAgsAk and aluminum. Several irregular silvery 

crystals from the product of reaction (1) were loaded for single crystal X-ray anafysis. From 

the refined composition of one of these single crystals, reaction (2) was carried out, and 

yielded single phase EuAgsAlfi. 

arc welder 
Eu + 5Ag + 8 A1 -)• EuAgsAle + A1 (1) 

arc welder 
E u  +  5 A g + 6 A l  - >  E u A g s A U  ( 2 )  

A large piece of the arc melted button of reaction (2) was anafyzed with energy 

dispersive spectroscopy in a JEOL 6100 scanning electron microscope, which indicated that 

Eu, Ag, and A1 were the onfy elements present in the sample. 

Structure Solution 

A crystal fragment from reaction (1) was mounted on a glass fiber with epo  ̂in air 

for single crystal X-ray anafysis. A unit cell was indexed fix>m a collection of peaks located 

from a rotation photograph, whose orientation matrix was refined using a group of 30 

reflections between 12° < 29 < 25**. A data set of 920 reflections, containing 354 unique 

reflections, as well as absorption correction reflections was collected on a Siemens P4 
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difSiactometer at 298 ±2K. Lorentz and polarization corrections were a^fied to the data 

as well as a semi-en^irical absorption correction based on the collected azimuthal scans. 

Tbe structure was solved by direct methods and refinement calculations were performed on a 

Digital Equ^ixient Micro VAX 3100 conq)uter using the SHELXTL-PLUS programs.̂ "*^  ̂

Table 7.1 contains a summary of the structure sohition and refinement calculations, and the 

positional parameters, site occiq>ancies and isotropic di^lacemeot parameters are listed in 

Table 72. 

Table 7.1; Structure determination summary for a crystal of EuAgsAle chosen fix>m the 
product of reaction (1). 

Refined Chemical Formula EuAg4.67Al6J3 

Space Groiq) I4i/amd 

Unit Cell Dimensions a =11.047(2) A 
c= 7.167(1) A 

Unit Cell Volume 874.6 (3) A  ̂
Z 4 
Density (calc.) 6.278 Mg/m  ̂
Absorption Coefficient 17.877 rmn' 

Radiation MoKa(A. = 0.71073 A) 
Temperature (K) 298(2) 
26 Range 3.0 to 60.0 ® 
Scan Range (ca) 0.75® 
Scan Speed Variable: 3.0 to 20.0 7min. in q> 
Iixiex Ranges -l</j<15, -l<it^l5, -1</<10 

Reflections Collected 920 
Independent Reflections 354 (Rto = 0.0798, Rc= 0.0628) 
Observed Reflections 324(Fo>2a(Fo)) 

Weighting Scheme w= l/[s (̂Fo^)+(0.0253P)V39.8079P] 
Parameters Refined 19 
R Indices (Fo  ̂ 4.0CT(FO)) R = 0.0361, wR = 0.0910 
R Indices (aU data) R = 0.0396, wR = 0.0932 
GooF, All Data 1.086 
Data: Parameter Ratio 18.6:1 
Largest Difference Peak 2.038 e/A  ̂
Largest Difference Hole -2.168 e/A  ̂

•P = (Fo^ + 2FCV3 
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Table 7.2: The positional parameters, site occiq>aiicies and isotropic thermal parameters for 
EuAg4.67Al6J3. 

Atom Wyck. (sym) X y z Occ. Ueq 

Eu 46 (4m 2) 0.0 0.25 0.325 1.0 0.0093(3) 

Ag Aa (4m 2) 0.0 0.75 0.125 0.796(15) 0.0136(7) 

A1 4a (4m 2) 0.0 0.75 0.125 0.204(15) 0.0136(7) 

Agl 8c (.2/m.) 0.0 0.0 0.0 0.472(9) 0.0132(6) 

All 8c (.2/m.) 0.0 0.0 0.0 0.528(9) 0.0132(6) 

Ag2 32/ ( 1 )  0.2058(1) 0.3703(1) 0.0764(1) 0.367(6) 0.0121(4) 

A12 32/ ( 1 )  0.2058(1) 0.3703(1) 0.0764(1) 0.633(6) 0.0121(4) 

Mother single crystal collection and structure refinement was carried out on a 

crystal chosen from the single phase product of reaction (2). An abbreviated summary of the 

results of this structure refinement are given in Tables 7.3 and 7.4. 

Structure Description 

EuAgsA]6 adopts the body-centered tetragonal BaCdn structure, with the aluminum 

and silver atoms mixing throughout the network on each of the three atomic positions; Aa, 

8c, and 32/. As refined for the second crystal, some of the distances are listed in Table 7.5. 

The £u atoms are surrounded by 22-vertex polyhedra con^sed of A1 and Ag atoms, the 

Agl/All atoms sit in 12-vertex po^edra, the Ag/Al atoms in 14-vertex polyhedra, and the 

Ag2/A12 atoms are surrounded by irregular po '̂hedra of 10 atoms. A section of the 

structure is shown in Figure 7.1 (a), and the pofyhedron around the Eu atoms is shown in 

Figure 7.1 (b). The netwo± of Ag2/A12 atoms is shown in Figioe 7.1 (c). 
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Table 7.3: The summaxy of the solution and refinement of a single crystal of EuAgsAlfi 
chosen fix)m reaction (2). 

Refined Chemical Foimula 

Space Groi  ̂

Unit Cell Dimensions 

UnitCeUVohime 
Z 
26 Range 
Index Ranges 
Reflections Collected 
Independent Reflections 
Observed Reflections 
R Indices (F© ̂  4.0 a (Fo)) 
R Indices data) 
GooF, AU Data 
Data: Parameter Ratio 
Largest Difference Peak 
Largest Difference Hole 

EuAg5.175Al5.825 

I4i/amd 
a =11.055(2) A 
c= 7.116(1) A 
86728 (3) A^ 
4 
3.0 to 60.0" 
-1</?<15, -1 <it<15, -1</<10 
906 
349 (Rto = 0.0356, Rc= 0.0383) 
294(Fo>2a(Fo» 
R = 0.0206, wR = 0.0383 
R = 0.0326, wR = 0.0406 
1.014 
10.26:1 
0.876 e/A^ 
-0.839 e/A^ 

Table 7.4: The positional parameters and site occiq)ancies and isotropic displacement 
parameters for E11Ag5.175Als.825-

Atom Wyck. (sym) x y z Occ. Ueq 

Eu 4& (4ffi2) 0.0 0.25 0.325 1.0 0.0093(2) 

Ag 4a (4ot2) 0.5 0.75 0.125 0.875(6) 0.0138(3) 

A1 Aa (4m2) 0.5 0.75 0.125 0.125(6) 0.0138(3) 

Agl 8c (.2/w.) 0.0 0.0 0.0 0.475(6) 0.0091(11) 

All 8c {21m.) 0.0 0.0 0.0 0.525(6) 0.036(9) 

Ag2 32/ ( 1 )  0.1740(1) 0.3802(1) 0.0441(1) 0.417(3) 0.0122(13) 

A12 32/ ( 1 )  0.1740(1) 0.3802(1) 0.0441(1) 0.583(3) 0.015(4) 
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Figure 7.1(a) The extended network of EuAgsAk. The large open circles are the Eu 
atoms, the large gray circles are Ag/Al atoms, the dark gray circles are Agl/All, 
and the small gray circles are Ag2/A]2 atoms, (b) The 22-vertex po^diedron 
surrounding the Eu atoms, (c) The Ag2/A12 network of edge-sharing tetratedra. 
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Several ternary con^wunds have been reported forming the BaCdu structure 

inchiding: LaAgsAls,̂  ̂ Pr2Cui5Al7, DyGa4Cu7, and SmGa4Cu7.̂ ^  ̂ In several reactions 

involving La, Ag and Al, I have observed LaAgxAlii.x in the products, and have collected 

and solved single crystal data, with a refined con^sition of LaAg6.7Al4j. 

Reaction (3) was carried out during the investigations of quaternary phases as 

reported in chsqpter 4. EuYbAgioAlu adopts the BaCdu structure, with Eu and Yb atoms 

mixed throughout the structure. A small crystal finm the products of reaction (3) was 

anafyzed with single crystal X-ray diffraction, with a refined conqwsition of 

EuYbAgi LgAlio:?. 

arc welded 
Eu +Yb+10 Ag + 12 Al -> EuYbAgioAli2 (BaCdn structure) (3) 

Table 7.5: Distances within EuAgsAle, as refined in the second crystal structure. 

atom CI) atom (2) distance A # of interactions 

Eu Agl/All 3.8412(4) 4 
Ag/Al 3.5580(5) 2 
Ag2/A12 3.3860(7) 8 
Ag2/A12 3.5270(3) 8 

Ag/Al Agl/All 2.9034(5) 4 
Ag2/A12 2.9969(7) 8 

Agl/All Ag2/AI2 2.7153(7) 4 
Ag2/A12 2.7467(8) 4 

Ag2/A12 Ag2/A12 2.6494(14) 1 
Ag2A12 2.6619(13) 1 
Ag2/A12 2.6467(8) 1 
Ag2/A12 2.7896(8) 2 
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Gd3AgioAl5 - ErZns Structure 

Synthesis and Physical Measurements 

The new temazy compound GdjAgioAls was prepared from the elonrats in an arc 

melting furnace, using the techniques described in ch£ t̂er 2. The new ternary was observed 

in the annealed products of reaction (1). 

arc welder annealed in Nb foil (850 ®C) 
Gd + 5Ag + 7 A1 —> GdjAgcAlp-x "f" GdsAgxAlu-x —y GdsAgioAls +NbAl3 (1) 

The initial products of reaction (1) aft» arc welding were a combination of a ternary silver 

aluminide in the Th2Mi7 structure, and a phase î ch has the a - LasAlu structure. GdsAln 

has not been reported, but there are reports of ternary aluminides and gaUides forming this 

structure type includiog several new phases Ln3Au2A19 (Ln = Sm, Gd, Tb, Dy, Yb) reported 

in chĵ er 5, and LnaCutGa? (Ln = Dy, Ho, Er, Tm, Yb, Lu).̂ '̂ It is possible that this 

product is a new silver containing ternary aluminide adopting the a-LasMi structure, but 

this was not confirmed by any single crystal measurements. The product button was 

wr̂ )ped in Nb foil for annealing in a fused silica jacket at 8S0°C for 2 weeks. After 

amiealmg the silvery product button was intact, however, there were also some golden 

crystallites on the Nb foil Both the product button and the goMen crystallites were identified 

as the new ternary phase GdsAgioAls. The powder pattern of the crystallites >^ch were 

taken off the foil, and some of the small powder that fell off the foil (see SEM photos) 

inchided NbAb. 

A piece of foil with golden crystallites on it was analyzed by EDS in a JEOL 

scanDing electron microscope. Gd, Ag and A1 were the only elements identified in the 

crystallites, and ^nTall NbAls crystals were observed on the foil Three SEM pictures are 

included in Figure 7.2: (a) is a picture of the golden crystallites on the Nb foil, and (b) and 

(c) are pictures ofthesniallerNbAls crystals on the Nb foil, at different magnifications. 

A small piece (21 mg) of GdBAgioAls was glued inside a plastic straw for a magnetic 

susceptibility measurement which was p«:formed using a SQUID magnetometer, fiom 6 -
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• 
H 

(a): An SEM image of three crystallites of annealed GdsAgioAls on a small piece of Nb foiL 
The magnification of this image is x230, so the ^proximate size of the crystallites is 
100-200 ^un. The EDS anafysis if these crystallites indicated Gd, Ag and A1 were the 
only elements present. 

I N T G  S L O W -  E J ; W > T  

• F 1 L 0 1 
X85 0 'les-m ' WD 2 4 

(b): An SEM image of the edge of a GdsAgioAls crystallite (iqjper left) and the small square 
shaped NbAls crystallites on the Nb foiL The magnification of this inaage is x850, so 
the size of the square crystals of NbAls is < 10 fim. 

Figure 7.2: Three SEM images of some GdsAgioAls and NbAls crystallites. 
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U  E  I  N  J  G  S L O W  P H O T  I M  O  N  I  

F  1  1  
1 5 K Y  X 2 , 3 0 0  1 0 H " M  W D 2 4  

(c) An SEM image of the NbAb crystallites on the Nb foil of the annealed reaction 
GdsAgioAls. The magnification of this image is x2,300, so the crystallites are <10nm in 
size. 

Figure 7.2: continued 
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300K at a feld straigth of 3 Tesla. After a diamagnetic core correction was applied, 

GdsAgioAls was paramagnetic with an effective moment of 14.63(2) Bohr magoetons (T > 

80iQ, slightly higher than the moment calculated fi)r 3 non-intaacting Gd^  ̂(f), or 8.44 

for each Gd^  ̂atom, see Figure 7.3. The calclated moment for 3 nonrinteracting Gd^  ̂per 

formula unit is 13.5 (see ch5, eqiiation (1)). 

Structure Solution 

A small golden ciystal was loaded in a cspHHaiy for single crystal anafysis, using the 

same procedure as described earlier for EuAgsAk. The results of the structure sohition are 

reported in Table 7.6, with the positional parameters, site occiq)ancies, and isotropic 

displacement parameters listed in Table 7.7. A second single crystal data set was collected 

and solved with a refined conqx>sition of GdsAgioAls.i, and the nearty identical j&actional 

occî ancies of silver and aluminum. 

The lattice parameters for Gd3AgioAls were refined from the measured lines of the 

powder X-ray pattern, and are a = 9.232(2) A, c = 9.456(3) A. Reactions (2) - (4), were all 

carried out in the arc melting fomace, and the products have been characterized by powder 

X-ray difiSraction. 

3 Gd + 10 Ag + 6 Al —> GdsAgioAls (2) 

2 Gd + 9 Ag + 8 Al —• GdjAgioAls + Gd2AgxAli7.x (Th2Nii7) (3) 

2 Gd + 6 Ag + 11 Al —> Gd2AgxAli7-x (TIbNin) + GdsAgjAln-x (<* - LasAlu) (4) 

Structure Description 

GdsAgioAls forms a ternary variant of the primitive hexagonal ErZns structure, as 

shown in Figure 7.4 (a), with a single 17 atom 'chister-like' unit shown in Figure 7.4 (b). 

The atoms labeled Agl, A12 and AB in Figure 7.4 (b) are all sites occupied by both Ag and 

Al, but are labeled with the atom type whose occupancy on that site is the greatest (refer to 

Table 7.6). There is disorder of the Ag atoms (Ag4 - Ag7) along the c-axis betwe  ̂(0,0,0, 
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Figure 7.3: The magnetic susceptibility data for GdsAgioAlj. 
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Table 7.6: Structure determination summary for a crystal of GdsAgioAls chosen from the 
product of reaction (1). 

Refined Chemical Formula GdsAgio.isAls 

Space Groî  

Unit Cell Dimensions 

Unit Cett Volume 
Z 

Density (calc.) 
Absorption CoefiScient 

Radiation 
Ten9)erature (K) 
26 Range 
Scan R a n g e  ( ( D )  
Scan Speed 
Index Ranges 

Reflections Collected 
Independent Reflections 
Observed Reflections 

Weighting Scheme 
Extinction Coefficient 
Parameters Refined 
R Indices (Fo S 4.0 c (Fo)) 

R Indices data) 
GooF, All Data 
Data: Parameter Ratio 
Largest Difference Peak 
Largest Difference Hole 

P63/mmc 

a = 9.223(1) A 
9.446(2) A 

695.9 (2) A  ̂
2 
8.139 Mg/m  ̂
29.210 mm"' 

MoKa(A. = 0.71073 A) 
298(2) 
5.0 to 50.0 " 
0.75® 
Variable: 3.0 to 20.0 ®/mirL in to 
-1^A<10, -10<it<l, -1 ̂ /<11 

1748 
261 (Rio, = 0.0570, Re =0.0298) 
246(Fo^2a(Fo)) 

w=l/[s^(Fo )̂+(0.00P)̂ +6.4928P] » 
0.00146(14) 
40 
R = 0.0184, wR = 0.0405 
R = 0.0203, wR = 0.0411 
1.204 
6.15:1 
0.916 e/A  ̂

-0.774 e/A  ̂

• P = (Fo  ̂+ 2FCV3 



www.manaraa.com

144 

Table 7.7; The positional parameters, site occiq)aiicies and isotropic displacement 
parameters for GdsAgio.isAls. 

Atom Wvck. Csvm') X V z Occ. Ueq 

Gd 6h imml) 0.3903(1) 0.1952(5) 0.25 1.0 0.0075(2) 

Ag 12k (.OT.) 0.1586(1) 0.3174(1) 0.0886(1) 1.0 0.0120(2) 

Agl 4f (3w.) 0.33333 0.66667 -0.0083(3) 0.552(8) 0.0086(7) 

All 4f (3m.) 0.33333 0.66667 -0.0083(3) 0.448(8) 0.0086(7) 

Ag2 6h (mm2) 0.1340(2) 0.5670(1) 0.25 0.436(7) 0.0094(6) 

AI2 6h (mm2) 0.1340(2) 0.5670(1) 0.25 0.564(7) 0.0094(6) 

Ag3 (.2/m.) 0.0 0.5 0.0 0.198(8) 0.011(1) 

AB 6g (.2/m.) 0.0 0.5 0.0 0.802(8) 0.011(1) 

Ag4 2b {6m2) 0.0 0.0 0.25 0.43(2) 0.010(2) 

AgS 12i (.2/m.) 0.0 0.0 0.313(2) 0.208(12) 0.017(3) 

Ag6 2a (3m) 0.0 0.0 0.0 0.116(11) 0.011(6) 

Ag7 12i (.2/m.) 0.0 0.0 0.088(2) 0.079(7) 0.005(6) 

and 0,0,0.313), but only the 0,0,1/4 position is shown in the figures. The Gd atoms are 

surrounded 15 Ag and A1 atoms in irregular po^ îedra, and the shortest Gd - Gd distance 

is 3.8233 A, see Figure 7.4 (c). The structure is built of 17 atom 'chister-like' units which 

are linked together by the Ag4 (and AgS - Ag7) atoms along the c-direction (0,0,z). The 17 

atom 'chister-Iike' units are three £tce-sharing 8-vertex paralle îpeds >^ch are each 

centered by a Ag2 (44%)/A]2 (56%) atom, >^ch together form a triangle with distances 

from Ag2/A12 - Ag2/A12 of 2.758(3) A. The Agl/All atoms sit above and below this 

triangle of Ag2/A]2 atoms. The Ag atoms form trigonal prisms around the atoms along 

(0,0,z), and it is through these atoms (Ag4 - Ag7) that the chister units are linked. Figure 

7.4 (a) shows a single 'layer' of these clusters and the triangles of Gd atoms which pack 

between these clusters in the c-direction. Table 7.8 lists the bond distances within the 

structure. 
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(b) (c) 

Figxire 7.4: (a) The extended network of GdsAgioAls. (b) The 17 atom 'chister-Iike' unit 
with 3 &ce-sharing 8 vertex pofyhedra around Ag2/A12 atoms (small dark gray 
circles), (c) The 15 nearest neighbors surrounding the Gd atoms (large open 
circle). 
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The disorder along the c-axis results in the fractional occupation of four sites (Ag4 -

Ag7 in Table 7.7). The refinement of these positions was most successful as Ag atoms, and 

attempts at refining with A1 or O atoms were unsuccessfiiL Although these positions are not 

well resolved, two other oystals structure solutions do show similar refinements of the same 

positions along the (0,0,1) direction. 

Table 7.8 : Selected distances in GdsAgioAls. 

Atom(l) Atom (2) distance (A) number 

Gd Ag 3.205(1) 6 
Agl/All 3.176(2) 2 
Ag2/A12 3.250(1) 2 
Ag3/A13 3.414(2) 4 
Ag4 3.117(1) 1 

Ag Ag 3.035(1) 2 
Ag 3.051(1) 1 
Agl/All 2.936(1) 1 
Ag2/A12 2.864(1) 2 
Ag3/AI3 2.854(1) 2 
Ag4 2.958(1) 1 

Agl/All Ag 2.936(1) 3 
Ag2A12 2.913(2) 3 
Ag3/A13 2.664(1) 3 

Ag2/A12 Ag2/A12 2.758(3) 2 
Ag3/A13 2.593(1) 2 

Ag4 Ag 2.958(1) 6 

LnaAgxAln-x - ThaNin vs. 

Structure Description 

Th2Nii7 and ThzZni? are structural derivatives of CaCus, in which one fifth of the Ca 

atoms are replaced by pairs of transition metal atoms.̂ "* Tbl̂ n is a hexagonal structure 

which crystallizes in the space groiq) P63/mmc (Z = 2), with a imit cell volume six times as 

large as that of CaCus. TtbZnn is a rhombohedral structure, (Z =3, i?3m) with a unit cell 

volume nine times that of CaCus. Figure 7.5 contains the arrangement of Ca atonss in CaCus 
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(a), and the airangement of Th atoms and - N1 (or Zn - Zn) 'pairs' in Th2Nii7 (b) and 

ThaZni? (c). In CaCus (a) the Ca atoms are located at (0,0,0) and equivalent positions. In 

HbNiir, the Th atoms arrange themselves abng the c-axis at (0,0,1/4 and 0,0,3/4), but 

abng (1/3, 2/3, z), Th atoms and M-Ni 'pairs' alternate, see Figure 7,5 (b). In Th2Zni7, see 

Figure 7.5 (c), the Th atoms and Za-Za 'pairs' are arranged in a ...Th, Th, Zn-Zn... pattern 

along the (0,0,z) and (1/3, 2/3, z) directions. Figures 7.6 (a) - (c) are pictures of the three 

structures, including the kagomî  networks of Cu, and Zn atoms, with the unit cells 

highlighted. Figures 7.7 and 7.8 further demonstrate the arrangements of Th atoms and M -

M 'pairs' in the 'columns' formed by the nets of M and Zn atoms in both ThaZni? and 

Th2Nii7. 

A variety of ternary aluminide phases has been reported in both of these structure 

types. In Pearson's Handbook of Crystallographic Data for Intermetallic Phases, there are 

16 aluminum-containing con^unds reported in the Tl̂ Nin structure, and 38 for Th2Zni7 

structure.̂ ""' The majority of these phases have been characterized powder X-ray 

difS:action, but several of them have been characterized by single crystal X-ray anafysis, and 

some exan l̂es are listed Table 7.9. 

From the single crystal solutions reported for Lai.sAg6 îo  ̂ (ThaMn) and 

La2Ag9.6Al7j (Th2Zni7), theoretical powder X-ray patterns were generated, see Figures 7.9 

(a) and (b). The theoretical patterns are similar, however, there are some differences in line 

positions and in the intensities of several coincidental lines. Despite these differences, it is 

possible that a powder pattern including the lines of one of these phases could be 

misidentified, especial̂  if the product contained mult̂ le phases, ^^ t̂hout careM powder or 

single crystal X-ray anafysis, it is possible that some of the reported con:qx)unds may have 

been characterized incorrectly, and their reported compositions are onfy approximate. 

Having made note of this, the single crystal reports do suggest that the aluminumrrich 

ternary con^unds form the Th2Nii7 structure, and the sitv -̂rich con^unds form the 

TtbZnn structure. To our knowledge however, there has not been a systematic synthetic 

effort to e}q)lore the conq)ositional dependence on the formation of either of these phases. 
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PSymmc 
Thl (2b) -> 0,0,1/4 ; Th2 (2d) -• 1/3,2/3,3/4 
Nil(40-> 1/3,2/3,0.110 
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(C) 
ThzZnn - (Th and Zn - Zn pairs) hR19 

R3m 
Thl (6c)->0,0,1/3 
Znl (6c) -• 0, 0, 0.097 

Figure 7.5: (a) The Ca atoms in CaCuj. (b) The arrangement of Th and Ni-Ni 'pairs' in Th2Nii7. Along the direction (0,0,z) there 
are only Th atoms, and in the (1/3,2/3, z) direction, Th atoms and Ni-Ni 'pairs' alternate, (c) The arrangement of Th and 
Zn-Zn 'pairs' in ThaZnn, is alternating ...Th, Th, Zn-Zn... along (0,0,z) and (1/3,2/3 z). 
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(a) CaCus (b) ThzNin (c) ThaZnn 

Figure 7.6: In each picture the unit cell is highlighted by the dashed line. The gray circles in each structure are the Cu, Ni and Zn 
respectively, the large open circles are the Ca and Th atoms, and the Ni-Ni and Zn-Zn 'pairs' in (b) and (c) are the black 
circles, (a) The CaCuj structure showing the Ca atoms and the Cu network, (b) The ThzNii? structure with only Th atoms 
in the channels running along (0,0,z) and Th atoms and Ni-Ni 'pairs' ahemating along (1/3, 2/3, z). (c) The Th2Zni7 
structure with all 'channels' occupied by both Th atoms and Zn-Zn 'pairs'. 
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Th2Zni7- RSm 

O O 

o 

o 

o 

Figure 7.7: The two 20 vertex po^diedra around the Zn-Zn pairs and the Th atoms in 
Th22 î7. The large open circles are Th, the smaller gray circles are the Zn - Zn 
pairs, and the small open circles are the Zn atoms ofthe kagom  ̂nets. 
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(D 

0 
u. 

ThaNin - P63/mmc 
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O 

Figure 7.8: The three 20 vertex polyliedra that surround the 2 Th atoms and Ni-Ni 'pairs'. 
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Since these phases were similar in con^sition to the other ahmdnumrrich conqwunds under 

consideration with vec between 2 and 4, a systematic synthetic appmach. was earned out for 

the La2AgxAli7.x series. 

Synthesis and Characterization 

The synthesis of the series of LajAgxAln-x conq>ounds was carried out fix)m 

stoichiometric combinations of the elements in an arc melting furnace, as described in 

chf̂ er 2. The reactant conqwsitions and the products identified by powder X-ray 

diffraction are given in Table 7.10. Li many of the products, muh l̂e phases were observed 

in the powder patterns, in ^^ch cases the major phases are underlmed. Since the 

coispositions of the product phases are difScult to assess, particular̂  in the presence of 

mult̂ le phases, the general conqraunds Th2>Hi7 and ThZni? are listed in cases \diere onty 

the structure type could be identified. For many con^Msitions, reactions were carried out 

mult̂ Ie times, however, if the results were identical, only one is reported. 

Table 7.9: Ternary aluminides forming either the Th2Nii7 or ThaZnn structure having been 
characterized with single crystal X-ray ana^ .̂ 

G)mposition Structure vecfsandp') Reference 

Lai.sAgs.sAlioj Th2Nii7 2.55 36 
Cei.8Ag6.5Alio.5 Th2lfi[i7 2.55 36 
Pri.8Ag6.5Alio.5 TTteNin 2.55 36 
Ybi.8Ag7Alio Th2Nii7 2.49 36 

La2Ag9.6Al7.3 Th2Zni7 2.21 36 
CezAgg.gAlg  ̂ Th2Zni7 2.31 36 
Pr2AgioAl7 ThaZnn 2.17 36 
Yb2Ag9Al8 Th2Zni7 2.29 36 
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(a) Lai.gAgsjAlio  ̂ (Th2Nii7) 
P63/mmc a = 9.404 A  c = 9.153 A  

1 ^ f 1 1 ^ ii !• ,1 1 1  I i j  I I  I  I  I I i  I I 1  I  1 1 r l I  V I I  I I  1 1 r I  f I 1 1 f  I I 1 1  I I  I  r  I I I t  i  I  HH- 'IWrUf / n  I'l I 'n'iVi'i'f I n'l'i 11 'v' f  I ' v i  i  v  

10 .  20 .  30 .  40 .  50 .  60 .  70 .  80 .  

(b) La2Ag9.7Al7j (Th2Zni7) 
R3m a = 9.451 A c=13.726A  

1  r i  1 1 1 1 1 1 1 1  M  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  n  n  1 1  r r i i  I t  n  1  I ' l l  n  r  1  i T T i  i i '  i  i r r  i  I ' l  i r r r i "  i  n  1 1 1  n  v v  n  1 1  r i  

10 .  20 .  30 .  40 .  50 .  60 .  70 .  80  

Figure 7.9 (a): The theoretical X-ray powder pattern generated &om the single crystal 
solution of Lai.8Ag6.5Alio.5 from reference [36]. This conqwund adopts the TbNii? 
structure type, (b) The theoretical X-ray powder pattern generated from the single 
crystal sohition of La2Ag9.7Al7j from reference [36]. Tlus con^und adopts the 
Tl̂ Znn structure type. 
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Table 7.10: The reactast con^oshion and ciystalline products identified 1  ̂powder X-ray 
diffiaction. The underlmed phases represent the major products based on intensities 
of the difSracted patterns. 

Reactant r/̂ inpnsiti'on 

La2Ag4Ali3 

La2AgsAli2 

La2Ag5Ali2 

La2Ag7Alio 

Lai.8Ag8Al9 

La2Ag8.5Al8.5 

La2Ag9Alg 

La2AgioAl7 

La2AgnAl6 

Products (as identified bv powdw Y-ray diffraction') 

ThgMj? + 'BaA]4' type 

Thg^Nii? + 'BaAl4'type 

La2AgsAli2 CObMn) -> (annealed) same 

ThgMj? + TlfcZni? 

ThgNi]? + LaAg6Als (BaCdn) ->(annealed) same 

Th;Zn]7 + LaAg^Als (BaCdn) 

TlfcNin -> (annealed) TlfeZni? 

La2AgioAl7 (TlfeZni?)* 

Th^Zn]7 + Th2Mi7 * 

(*) pattern inchides several weak unidentified lines 

Results 

The results of this series of reactions agrees with the general observation that silver -

rich systems form the Th2Zni7 structure, and ahmunum-rich systems adopt the Th2Nii7 

structure, but it is &r from definitive. Many of these reaction products were annealed in an 

attenQ)t to inq>rove the crystallinity of the products for single crystal X-ray ana^ .̂ In all 

but one case, the crystals were poor quality, th  ̂were weakty diffracting and had broad, 

noisy reflection profiles. A crystal of suitable quality was discova%d from the products of 

reaction (5), and a data set was collected on a Siemens P4 diffractometer. 

arc welder 
La + 5.5 Ag + 7.5 A1 La2Ag*Ali7-x (ThzNin) (5) 

Tables 7.11 and 7.12 summarize the results of the single crystal refinement. La2Ag7Alio 

forms a variation of the Th2>ni7 structure. In Th2Nii7, (see figure 7.8), the 'channels' along 
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(0,0,1) are occupied exchisivefy by cations, but La2^7Alio is a 'fiSed' variant of ThzNli? in 

v^ch all three 'chaimels' are occiq)ied to some extent by both La atoms and dimers. The 

refinement was not straightforward, and is not of sufScient quality to be considered 

adequate, but unfortunate ,̂ despite many attenqyts, another suitable crystal was not found. 

However, the theoretical powder pattern generated fiom this refinement matches the powder 

pattern of the product fix)m reaction (5) very well 

Table 7.11: The structure determmation summary for La1.90Ag7j4Al9.6-

Refined Chemical Formula Lai.9oAg734Al9.6 
Space Group 
Unit Cell Dimensions 

P63/n2mc 
a = 9.394(1) A  
c= 9.416(2) A 

Unit Cell Volume 
Z 
Density (calc.) 
Absorption Coefficient 

699.0 (2) A  ̂
2 
6.250 Mg/m  ̂
16.303 mm"̂  

Radiation 
Ten:q)erature (K) 
26 Range 
Scan Range (00) 

Scan Speed 
Index Ranges 

MoKa(X = 0.71073 A )  
298(2) 
3.0 to 50.0 ® 
0.85® 
Variable: 3.0 to 30.0 ®/nm in o 
-I^A^IO, -ll<it^l, -1</^10 

Reflections Collected 1184 
Independant Reflections 267 (Rim = 0.0477, R«= 0.0302) 
Observed Reflections 195 (Po 2a (Fo)) 

Weighting Scheme w = l/[s^(Fo )̂̂ 0.0496P)Vl5,212P] * 

Parameters Refined 40 
R Indices (Fo > 4.0 a (Fo)) R = 0.0385, wR = 0.1027 
R Indicies (all data) 
GooF, All Data 

R = 0.0585, wR= 0.1129 
1.189 
6.68:1 
1.181 e/A  ̂
-1.013 e/A  ̂

Data: Parameter Ratio 
Largest Difference Peak 
Largest Difference Hole 

»P = (Fo  ̂+ 2Fc^)/3 
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Table 7.12: The posMonl parameters, site occiqyancies and isotropic thermal parameters for 
Laî Ag7.i6Alio.44. 

Atom Wyck. (sym) X y z Occ. Ueq 

La 2d (6m 2) 0.6666 0.3333 0.25 0.9«2(9) 0.0090(9) 

La 2c (6m 2) 0.6666 0.3333 0.75 0.13 0.029(5) 

La lb (6m 2) 0.0 0.0 0.25 0.79(1) 0.009(1) 

Ag 4/ (3m) 0.6666 0.33333 -0.1026(4) 0.45(2) 0.0128(13) 

A1 4/ (3m) 0.6666 0.33333 -0.1026(4) 0.42(2) 0.0128(13) 

Agl I2k (.m.) 0.3277(3) 0.1638(1) 0.0194(3) 0.416(10) 0.0124(9) 

All \2k (.m.) 0.3277(3) 0.1638(1) 0.0194(3) 0.584(10) 0.0124(9) 

Ag2 \2j (m...) 0.3347(6) 0.3755(5) 0.25 0.47(1) 0.0128(11) 

A12 127 (m...) 0.306(2) 0.320(2) 0.25 0.53(1) 0.0128(11) 

A13 (.2/m.) 0.5 0.0 0.0 0.70(1) 0.0129(14) 

Ag3 (.2/m.) 0.5 0.0 0.0 0.30(1) 0.0129(14) 

Ag4 4e (3m) 0.0 0.0 0.106(4) 0.077(9) 0.019(10) 

Ag5 4/ (3m) 0.6666 0.33333 0.10(1) 0.02(1) 0.000(3) 

Conclusions 

With the challenges presented by both the powder and single crystal X-ray 

diffraction, it is clear that more careful examination of these structures and con^Munds is 

necessary. However, with the general observation that the formation of one of the two 

structures is related to conqwsition, and therefore to the vec, the structures were evaluated 

using both the extended Huckel and second moment scaling calculations. The results of the 

secoiKi moment scaling calculations were presented in ch t̂er 6, and were somev  ̂

disappointing for the separation of the structures using s and p orbitals onfy. The inclusion 

of a low d-orbital core did affect the vec separation of the three structures, however. 
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this presents an additional challenge in the case of the temaxy aluminides. How does a single 

set of atomic orbitals (including a d-core) effectiveiy model con^unds of silver and 

aluminum? There is not an appropriate pseudo-element, )̂ se parameters would be a 

realistic mixture of those of silver and aluminum. 

Given the wide range of rare earth-silver-aluminides for which these structures are 

observed, the thorough investigation of these con^uods, their structures, and their 

physical properties could be a con l̂ex, but rich area of further study. 
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CHAPTERS 

AAn^Al̂  AND APd4Al9 (A = Ba, Sr, Eu, La) 
TETRAGONAL VARIANTS OF BaCusAlg 

Introduction 

AMxAlis-x conqwunds >^ere A = Ba and Sr, M = Cu and Ag, and 4 < x < 6, form 

the NaZni3 structure with the copper and ahmnnum atoms mixed throughout the structure. 

As discussed at the end of ch t̂er 2, significant synthetic effort was invested in investigating 

the substitutional derivatives of these parent ahiminides (see Table 2.5 or ^pendix A). 

Many transition metals were included such as Fe, Co, Ni, and other main groiq) elements 

were included such as Si, Sn, and Ge in addition to, or in place of the trielide element. The 

majority of these reactions resulted in the observation of conqK>unds with structures other 

than BaCusAls. In the reactions inchiding the heavier transition metals Pd and Au however, 

two new structure types were observed, both tetragonal variants of BaCusAU. APd^Alg (A 

= Ba, Sr, Eu) form a body-centered tetragonal variant of BaCusAlg, and AAusAU (A = Ba, 

Sr, La, Eu) form a primitive tetragonal variant. 

APd4Ai9 (A = Ba, Sr, Eu) 

Synthesis and Structure Solution 

The preliminary indication of this structural derivative was clear in the powder 

pattern of the products fix)m reaction (1). The initial reaction &om the elements in the arc 

melting furnace, was an attenc  ̂to make the Pd derivative of Bal̂ Alg. 

arc welder 
Ba + 2 Pd + 9 A1 -> BaPd4Al9 + A1 + trace BaAl* (1) 

The product was silvery, metallic looking and ground into a black powder for X-ray 

ana^ .̂ The powder pattern of the product contained a very similar pattern of lines as 

BaCusAlg, but many of the most intense lines were split, and there were some additional 

lines. This was the first indication that the product contained a coiopound with a similar 
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structure as BaCusAls, but of lower symmetry. the initial indication of a Ba - Pd - A1 

conQ)ound similar to BaCusAlg* reaction (2) was carried out 

arc welder 
Ba + 5 Pd + 8 A1 'BaPdsAlg' + trace unknown (2) 

The product was anafyzed using EDS in the SEM, and all three elements were 

identified in the san l̂e. Several crystallites of this product were loaded into a c îllary for 

single crystal X-ray ana^ .̂ It was very difScult to find a suitable crystal for single crystal 

X-ray data collection, because the san l̂es were weakfy  ̂ diffracting and the peaks were 

gaieraify broad and noisy. 

When an acceptable crystal was located, single crystal data were collected on a 

Siemens P4 diffractometer at 298 ± 2 K (Mb Kai). Peaks located fix)m a rotation photo 

were used to obtain a unit cell whose orientation matrix was refined using a groiq) of 50 

reflections in the 20 range 10" to 30®. A data set of 896 reflections, containing 472 unique 

reflections, as well as absorption correction reflections was collected on a Siemens P4 

diffractometer at 298(2) K. Lorentz and polarization corrections were applied to the data 

sets as well as a semi-enpirical absorption correction based on collected azimuthal scans. 

The structure was solved by direct methods and refinement calculations were performed on a 

Digital Equqnnent Micro VAX 3100 computer using the SHELXTL-PLUS programs.̂ '*̂  ̂

Table 8.1 and 8.2 summarize the structure refinement and unit cell contents. The structure 

refinement was carried out in several space groiq)s, and the centrosymmetric I4/mcm was 

the best choice. 

The structure refinement is poor, but it is good enough to generate a theoretical 

powder pattern which is an excellent match to the observed lines in the powder X-ray 

diffiaction pattern of this phase. For conq)arison, the theoretical powder patterns for 

BaCusAls and BaPd4Al9 are shown in Figure 8.1. The refined lattice parameters for 

BaPd(Al9 fi:om measured powder data are a = 8.741(4) A, and c = 12.538(1) A. 
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(a) BaCueAlr : a = 12.084 A Fm3c 

I I 1 j t I I I I I li I I I ( I t I j I i I I I 1 r i I 
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(b) BaPd4Al9: a = 8.731 A c = 12.494 A I4/nicm 
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Figme 8.1: The theoretical powder patterns generated from the single crystal refinements of 
(a) BaCufiAl? (Fm3c), and (b) BaPd4Al9 {I4/mcm). 
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Table 8.1: The structure refinement summary for BaPd4Al9. 

Refined Composition 
Space Group 
Unit Cell Dimensions 

Unit Cell Volume 
Z 
Density (calc.) 
Crystal habit: sh  ̂
Absorption CoefScient 

Radiation 
Tenq)erature 
20 mtx 
Scan Range (o) 
Scan Speeds 
Index Ranges 

Reflections Collected 
Independent Reflections 
Observed Reflections 

Weighting Scheme 
Parameters Refined 
R Indicies jPo > 2.0o(Fo)] 

R Indicies (aU data) 
Goof (all data) 
Largest Difference Peak 
Largest Difference Hole 

BaPd3.49Al9.s1 
I4/mcm (No. 140) 
a = 8.731(1) A 
c = 12.494(2) A 
952.4(2) A  ̂
4 
5.724 Mg/m  ̂
silver: irregular 
11.362 

Mo Ka(X = 0.71073 A) 
298(1) 
50® 
0.85" 
Variable; 3.0 to 20.0®/miiL in © 

-10 < A <10,-10^ it <10, 
-14</^14 
896 
250 (Rim = 0.090) 
195(Fo^2.0o(Fo)) 

w= 1/[S (̂FOM0.0005P)V300.0P] • 
24 
R = 0.075 wR = 0.1844 
R = 0.098 wR = 0.1933 
1.53 
2.41 e/A  ̂

-3.23 e/A  ̂

* P = (Fo  ̂+ 2Fc^)/3 
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Table 8.2: The posidonai parameters, occupancies, and isotropic displacement parameters 
fi>rBaPd4A]9. 

Refined Con^sMon BaPd3.49Al9 î 
Space Grov  ̂ 14/mcm (no. 140) 
Unit Cell Dimensions a = 8.731(1) A 

c = 12.494(2) A 

Atom Wyckoff x y z occ Ueq 

Ba 4a 0 0 0.25 1.0 0.014(2) 
Al Ad 0.5 0 0.5 1.0 0.021(6) 
Pdl 16/ 0.1692(3) -0.3308(3) 0.3849(3) 0.83(3) 0.015(1) 
All 16/ 0.1692(3) -0.3308(3) 0.3849(3) 0.17(3) 0.015(1) 
Pd2 16/ 0.129(1) -0.371(1) 0.183(1) 0.05(2) 0.024(5) 
A12 16/ 0.129(1) -0.371(1) 0.183(1) 0.95(2) 0.024(5) 
AD \6k 0.703(1) 0.565(1) 0.5 1.0 0.013(3) 

Structure Description 

BaPd4A]9 is a tetragonal derivative of BaCusAlg and has a very similar arrangement 

of atoms. There are centered icosahedral units, and 24-vertex polyhedra aromid the Ba 

atoms. Figure 8.2 shows a slice of the structure with the shaded icosahedral units 

highlighted. Included in Figure 8 is an Al-centered, 12-vertex, icosahedron and the 24-

vertex pofyhedron centered by Ba. The large open circles are the Ba atoms, the smaller 

open circles are the Pd atoms, and the small dark gray atoms are the AL (For those positions 

with mixed Pd and Al, the atom is idoitified with the majority atom.) Positions 4d (Al) and 

4a (Ba) are the centers of the icosahedia and snub cubes, with ̂ mometries (mjnm) and (422) 

respective .̂ Neither of these atoms has equivalent bond distances to the atoms in the two 

pol̂ iiedra, as in BaCusAlg. 
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A13 

Pdl/All 

Sdl/All 

Figure 8.2: The structure of BaPdiAlg, which is a tetragonal variant of BaCujAlg. The large open circles are the Ba atoms, the 
smaller open circles are Pdl/All atoms, the light gray atoms are Al, and the dark gray circles are the Pd2/A12 and A13 
atoms. 
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Reactions (3) aod (4) were also carried out in the arc melting furnace and the powder 

patterns of the products are very similar to the theoretical pattern generated from the single 

crystal solution of BaPd4Al9. These new products have been confirmed muh l̂e reactions 

yielding the same phases, \̂ ch persist i:̂ n annealing. 

These new conqraunds APd4Al8 (A = Ba, Sr, Eu) represent the first derivative 

structures of the NaZni3 type observed. In order to fiirther l̂ore and confirm the structure 

of these new ternaries, a more con l̂ete and well behaved structure solution must be 

obtained. 

AAu6Ai6 (A = Ba, Sr, Eu, La) 

Synthesis and Structure Solution 

To conq)lete the series of ternary conqwunds BaMsAlg with M = copper, silver and 

gold, reaction (5) was carried out finm the elements in the arc melting finnace. 

As in the case of the Pd reaction, the powder pattern resembled, but contaiî  many 

more lines than the pattern of BaCusAlg. Again, it was very difScult to isolate suitable single 

crystals because the products were very weakfy di£B:acting. After trying many crystals, an 

acceptable crystal fix)m reaction (6) was identified, and an orientation matrk was refined 

based on 82 reflection from 12° < 26 < 26°. A data set of 1190 reflections was collected at 

298(2) K on a Sfemens P4 difGractometer (Mo, Kai). Lorentz and polarization corrections 

Sr + 4Pd + 9Al SrPd4A]9 

Eu + 4Pd + 9 A1 -• EuPd4A]9 

(3) 

(4) 

arc welder 
Ba + 5 Au + 8 A1 -> 'BaAusAls' + trace unknown 

Sr + 5 Au + 8 A1 'SrAusAlj' + trace unknown 

(5) 

(6) 
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were applied to the data sets as well as a seim-enq)irical absorption correction based on 

collected azimuthal scans. The structure was solved by direct methods and refinement 

calculations were performed using the SHELXTL-PLUS programsJ'*^^ Table 8.3 and 8.4 

summarize the structure refinement and unit cell contents. 

Table 8.3: The structure refinement summary for SrAus.96A]«34. 

Refined Conq>osition 
Space Groiq) 
Unit Cell Dimensions 

Unit Cell Volume 
Z 
Density (calc.) 
Crystal habit: sh^ 
Absorption CoefScient 

Radiation 
Taiqjerature (K) 
20 max 
Scan Range (oo) 
Scan Speeds 
Index Ranges 

Reflections Collected 
Independent Reflections 
Observed Reflections 

Weighting Scheme 
Parameters Refined 
R Indicies (TFo ^ 2.0o(Fo)] 

R Indicies (all data) 
Goof (an d^) 
Data-to-Parameter Ratio 
Largest Difference Peak 
Largest Difference Hole 

SrAu5.96Al6. 
P4/nbm (no. 125) 
a = 8.720(1) A 
c = 12.470(2) A 
948.2(2) A  ̂
4 

10.042 Mg/m^ 
silver: irregular 
98.03 

Mo Ka (A, = 0.71073 A) 
298(1) 
50® 
0.85" 
Variable; 3.0 to 20.07n3iiL in o 

-1< 10,-1 <;t< 10, 
-1</<14 
1190 
469 (Hint = 0.0891) 
341 (Fo^2.0o(Fo)) 

w= l/[s^(Fo^)+(0.0424P)^-K).0] 

43 

R = 0.064 
R = 0.098 
1.356 
10.9:1 
5.71 e/A^ 

-3.69 e/A^ 

wR = 0.1250 
wR = 0.1383 

• P = (Fo^ + 2Fc^)/3 
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Table 8.4: The positional parameters, occupancies, and isotropic displacement parameters 
for SrAus.96A]6j4. 

Refined Conq)osition 
Space Groiq) 
Unit Cell Dimensions 

Atom Wyckoff x 

SrAu5.9«Al6j4 
P4/nbm (no. 125) 
a = 8.720(1) A 
c = 12.470(2) A 

occ. U «q 

Sr 2a 0.25 0.25 0.0 1.0 0.010(3) 
Sr 2b 0.25 0.25 0.5 1.0 0.006(2) 
Au 8/n 0.9210(2) 0.0790(2) 0.3765(2) 1.0 0.0195(8) 
Aul 8m 0.1182(2) -0.1182(2) 0.0708(2) 0.91(3) 0.0235(9) 
All 8w 0.1182(2) -0.1182(2) 0.0708(2) 0.09(3) 0.0235(9) 
Au2 16n 0.1901(3) 0.0552(3) 0.2469(2) 0.50(2) 0.0121(9) 
A12 16K 0.1901(3) 0.0552(3) 0.2469(2) 0.50(2) 0.0121(9) 
Au3 8OT 0.8688(10) 0.1312(10)0.5755(9) 0.095(12) 0.033(4) 
A13 8m 0.8688(10) 0.1312(10)0.5755(9) 0.905(12) 0.033(4) 
AM 8m 0.9123(16) 0.0877(16)0.1357(13) 1.0 0.022(4) 
AI5 4h 0.75 0.25 0.2431(40) 0.33 0.00(1) 

Figure 8.3 is a con:q)arison of the powder patterns generated from the single crystal 

refinements of BaCu6Al7 and SrAu^AU respective^. The pattem for SrAu6Al6 is much more 

conq)lex than that of BaCu^Al?, as is e}q)ected with the lowering of the symmetry. The 

structure of SrAueAIe is shown in Figure 8.4 with the 'en:q)ty' icosahedrorL This same 

powder pattem has been observed in the prodiicts of reactions (7) and (8) also. 

Eu + 6Au + 7 A1 'EuAufiAle' + A1 (7) 

La + 6Au + 7Al-> 'LaAueAle' + A1 (8) 
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(a) BaCueAl?: a = 12.084 A Fm3c 

i i i i j I i 1 i I i I 1 I I I i 1 I I I I t t j I i i > j I I I 1 j t t I I I I 1 1 i i i i i | i i i t | i i i t j i i » i j t i i i j i i i i j T i i i j t i i i j i i i i 

10.  20.  30.  ^0 .  50.  60.  70.  80.  

(b) SrAu5.5A]63 : a = 8.720 A c = 12.460 A P4/nbm 

1 .. . It . 1^1 (u I. 1 ii lit J j i  . ii .>. 1 I > 1 1 1 t .1 1 1 1 t 1 1 1 1 1 1 j 1 1 1 1 1 1 11 1 1 1 1 11 1 > 1 j > 1 11 1 i 11 > 1 • • 1 11 1 1 1 11 [ 1 111 > 111111 1 1111111111 i 1 
! ' 

10.  20.  30.  ^0 .  50.  60.  70.  80.  

Figure 8.3: The theoretical powder patterns generated from the single crystal refinements of 
(a) BaCueAlr (Fm3c), and (b) SrAu5.sAl6.5 (P4/nbm). 
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Figure 8.4: The structure of SrAus.sAU.s (P4/nbm), a tetragonal variant of BaCusAU. The large open circles are Sr, the smaller 
open circles are positions occupied by mostly (or all) Au atoms, and the smaller gray circles are A1 atoms, (refer to Table 
8.4). 



www.manaraa.com

169 

Conclusions 

These new conq)ounds, while not complete^ structural^ characterized yet, are an 

exciting addition to the BaCusAlg fiunity. These Pd containing aluminides represent new 

connections to quasicrystalline materials. Many of the well characterized quasicrystalline 

con^imds, such as AlToPdji contain frameworks of similar AlrPd ratios as this new 

ternary BaPd4A]9-^^^ further study of BaPd4A]9, whose structure contains pol^iiedral 

resembling icosahedra, this con^und may provide new msights into the formation, 

conq)osition and structure of quasicrystalline materials. 

AAu6Al6 (A = Sr, Ba, Eu, La) may provide a connection between the ThMhi2 and 

the NaZni3 structures. If the 12-vertex polj^edra in SrAueAU are in &ct enq)ty, then the 

conqx>sition of the network is the same as the LnCu^Al^ con^munds forming the ThMn^ 

structure, but with a structure that resembles BaCusAls. 
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GENERAL CONCLUSIONS 

It was mentioiied in ch^Jter 1 that intennetallic coo^unds offer chemists 'complex 

stmctoral challenges such as Pactional and mixed site occupancies, site preferences, 

vacancy ordering and structural phase transitions.' Many of the ternary ahumnide systems I 

have investigated presented these very challenges. The networks of interconnected 

polj^iedra in BaCusM (NaZnu), the two new tetragonal BaPd^Alg and SrAu6Al6 

derivatives, EuAgsAl^, DysAuaAl? and GdsAgioAls all contain positions of mixed 

occiq)ancies. The rare earth gold ahuninides involved interesting questions about site 

preferences, and vacancy ordering within the Au - A1 frameworks. The rare earth silver 

ahiminide phases adopting either the ThzNin or ThzZnn structures were a complex study 

of structure versus con^sition (or vec). In all of these compounds, whether th^ contained 

ordered or disordered intermetalHc networks, the 'coloring* question was an important one. 

In many cases, long term annealing of crystalline san^les and mult^le structure refinements 

were necessary to conq)lete a thorough structure sohition. Electronic structure calculations 

in addition to carefiil crystallogr^hy, were necessary to understand the arrangements of 

atoms within the various structures. 

From the beginning, we have examined the structures, phase widths, con^sitions 

and properties of aluminum-rich intermetaHics in an effort to understand materials with vec 

between the Hume-Rothery and Zintl phases. Furthermore, our interests included 

establishing ^^^lether these conqxsunds and their structures could be rationalized a set of 

valence or 'counting' rules. This, as we e}q>ected, has proven very dif&cult. Throughout this 

research, I have come to £^)preciate features of these con^unds which resemble both the 

Hume-Rothery and Zintl phases. Like the Hume-Rothery phases, many of these ahiminumr 

rich phases form densely packed structures associated with narrow ranges of vec. For 

example, tl^ phase width of BaCuxAli3.x (4 < x < 6) is &irty narrow, and the 

3 2~ ^[CusAIg] framework is electron precise (or near^ so), having the proper electron 

count to fill the bonding levels in the COOP curves, but leave the antibonding levels en::Q)ty. 
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However, in some ways these ahnninides also resemble Zintl phases. Like the Zintl 

phases, the electropositive metal atoms donate their electrons to the inteimetalHc framewoik 

and in most cases do not play a significant role in the structure and bonding of the anionic 

network. We are continuing to investigate the role of the electropositive metal atoms in 

some of these structures, because there are some earty indications that these cations are not 

always 'itmocent' conqwnents of the structure. Particular^ hi the case of the copper 

aluminides forming either the NaZnu or ThMnn structure, we believe the cation does have 

3 an in^rtant role in the ordering of the ao[^4^8l network in YCU4AI8. 

Using second moment scaling calculations to investigate the hQ'pothesis that these 

ternary aluminides can be separated into nairow ranges of vec within ^»4iich their formation 

is &vored, was disappointing for some con^Munds, and encouraging for others. A significant 

difBciilty in the second moment scaling calculations is the selection of a single set of atomic 

orbital parameters with which to model phases with widefy^ varying elemental con^nents, 

such as Al, Ga, Pd, Ag, Au and Ba. If and ^^dien the sms calculations have the capability of 

scalmg and comparing heteroatomic systems, then they may be able to better assess the 

ranges of vec for vsiiich these traiary conqwunds are stable. 
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APPENDIX A: REACTION COMPOSmON AND PRODUCT 
IDENnnCATION 

Reaction Heating Method Reaction Products 
Stoichiometry (by powder x-ray diffraction) 

*single crystal coUectioD and soludoa 

BaCusAls fumaceCl 150C) & arc welder BaCusAls* 
BaCuu arc welder BaCuis 
BaCu9Al4 arc welder BaCufiAl? + Cu ? 
BaCueAl? furnace (1150C) & arc welder BaCu6Al7 
BaCu4Al9 arc welder BaCu4A]9 
BaCusAlio arc welder BaCusAU + CuAfc + A1 
BaCuAli2 fiimace (1 lOOC) & arc welder BaAlt + A1 + BaCusAls trace 
BaAli3 arc welder BaAlt + A1 
BaZosAlg furnace (lOOOC) BaZnsAU + Ai + trace BaAU 
BaZosAlg arc welder BaAU + A1 + Zn 
BaAgsAlg furnace (1120C) & arc welder BaAgsAlg • + trace A1 + trace BaAU 
BaAg5^7.5 arc welder BaAgs.5Al7.5 • (a =12.675 A) 
BaAgsAlio arc welder BaAgsAlg + A1 
BaAgs-sAlyj arc welder BaAgs.5Al7.5 * 
BaCusGag furnace (600C, 950C) BaCusGa< + Ga + CuGa2 
BaCusIos furnace (600C, 950C) BaCusIns + In 
BaAg7Ga« fijroace (lOOOC) BaAgg(Gai3.x + BaGa^ 
BaAgaln? furnace (lOOOC) BaAgsIni3-x + In 
BaAusAlg arc welder (annealed 750C) SrAu6A]6 + ? 
BaNisAk fiimace (1075C) BaNi2Al9 + >ri 
BaM4Al9 arc welder Ni2Al3 + ? 
BaCosAU furnace (llOOC) BaCo2 AI9 + Co Afc 
BaCoAln arc welder BaCo2 AI9 + A1 + trace BaAU 
BaPdsAlg arc welder BaPd4Al9 *+ A1 + unknown (weak) 
BaRu2Al9 arc welder BaAlt RU4AI13 
BaCusSng furnace (600C, 950C) arc welder BaCuSi^ + Sn 

SrCusAlg furnace and arc welder SrCueAl? * + CuAfc 
SrCueAl? arc welder SrCu6Al7 * 
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SrCurAk arc welder SrCu7A]6 

SrAgsAlg arc welder SrAgsAlj + Al 

SrAgs.5Al7.5 arc welder SrAgs^^ (a= 12.6051A) 

SrAufiAl? arc welder (annealed 750C) SrAu6A]6 * 

SrPdsAlg arc welder SrPd4Al9 + unknown 

EuCufiAl? arc welder EuCueAl? * + CuAfc 

EuAgsM arc welder EuAgsAle * (BaCdii structure type) 

EuAgsAk arc welder EuAgsAk (BaCdii structure type) 

EuAusAle arc welder (annealed 750C) EuAufiAle 

EuNisAle arc welder Laves phase Cu2Mg type 

EuPdsAle arc welder EuPd4Al9 + unknown (weak) 

EUCUSAITSII arc welder EuCufiAl; + Sn 

EuFe2Al9 arc welder EuFe2A]9 (BaN^Alg) + tr. unknown 

EUC02AI9 arc welder EUC02AI9 (BaNi2Al9)+- tr. unknown 

Eu>fi2Al9 arc welder EuNiAls* +? 

EuNisAlg arc welding (annealed 8S0C)) (I^Als) very sharp and single phase! 

LaCusAlg furnace LaCufiAlr * +LaAl4 

LaCufiAl? arc welder LaCufiAl?* 

LaAg5^7J arc welder La-Ag-Al [TlbNin]* 
annealed LaAg6j3Al4.6« • (BaCdn) 

LaAgsAia arc welder La-Ag-Al [Th2>fii7] 

LaAujAl? arc welder (annealed 750C) LaAu^AU 

LaCoaAk arc welder mixture of NaZnis and Bal^Ak 

LaFe2AJ9 arc weld» mixture of NaZnu and BaM2Al9 

YCUCAIT arc welder ThMni2 * 
CeCusAlg arc welder ThMni2 + A1 + weak unknown 

GdCusAlg arc welder ThMii2 + trace A1 

HoCusAlg arc welder ThMni2 * 
HoCueAl? arc welder ThMhi2 

YbCusAlj arc welder ThNftii2 brd. lines + weak unknown 
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TbCusAlg 

SmCusAls 

DyCusAlg 

YbAgsAlg 

CeAgsAlg 

H0AU5AI7 

arc welder 
arc weMer 
arc weldo: 
arc welder 
arc welder 
arc welder 

ThMhi2 
ThMQi2 
ThMDi2 

Yb-Ag-AI, (TlfeMn, La-Ag-AI) 
Ce-Ag-Al, (TTteNin, La-Ag-Al) 

Sm3Au2Al9 
Gd3Au2Al9 
Tb3Au2Al9 
Dy3Au2Al9 
H03AU2AI9 
Yb3Au2Al9 
Y3AU2AI9 

arc welder 
arc welder 
arc welder 
arc welder (amiealiog 850C) 
arc welder 
arc welder 
arc welder 

SrD3Au2Al9 • + 'SmAUxAly' 
Gd3Au2Al9*+ 'GdAuxA^r' 

Th3Au2Al9 
Dy3Au2Al9 
'AuAk' + ? 

Yb3AU2A]9 
'AuAfc' + 'YAuxAV' 

La2Ag4Ali3 
L^AgsAli2 
La2Ag5Ali2 
La2Ag7Alio 
Lai.8Ag8Al9 
La2Ag8.5Alg.5 

La2^A]8 
La2AgioAl7 
La2AgiiAl6 

arc welder 
arc welder 
arc welder 
arc welder 
arc welder 
arc welder 
arc welder 
arc welder 
arc welder 

HbNi]7 + 'BaAlt'type 
Tb^Nii? + 'BaAli'type 

La2Ag5Ali2 (Th2Nii7) 
ThgNi}? + TlbZnn 
ThgNii? + LaAgfiAls (BaCdii) 
ThgZnt? + LaAgeAls (BaCdn) 

ThaNin -> (annealed) TlbZnn 
LaaAgioAl? (ThzZnn)* 
TbyZnt? + TlfcNin * 

Quaternary Reactions 

(BaSr)iCu6Al7 
(BaSr)iAg5jAl7j 

arc welder 
arc welder 
annealing (900C) 

(BaSr)iCu6Al7 * 
BaAg5^7.5 + SrAg5.sAl7.5 
(BaSr)iAg5.5Al7.5 

(BaY)iCu6Al7 arc welder 
(BaDy)iCu6Al7 arc welder 

annealing (900C) 

BaCus^Al?^ + YCU5AI7 
BaCu5.5Al7 J + DyCu5Al7 
DyCu5Al7 + BaCussAlrs fuzzier 
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(BaGd)iAg55Al7^ arc weldo: 

anneaKng (900C) 

(BaEu)iAg5^j arc welder 
aimealmg (900C) 

(SrCe)iCii6Al7 
(SrGd)iCusAl8 

arc welder 
arc welder 
amiealmg (900C) 

(SrEu)Ag5.5Al7.s 
(EuYb)iAgsA]6 

arc welder 

arc welder 

Eu(CuAg)5Al8 arc welder 

BaAg5.5Al7^ + Gd-Ag-Al (n^Nii?) 
(BaGd)iAgs^7.5 a= 12.779(6) A 

BaAgsjAly^ + EuAgsA]6 (BaCdn) 
(BaEu)iAgs.5Al7.5 a =12.753(4) A 

(SrCe)iCu6Al7 • 
SrCueAI? + GdCujAl? 
SrCueAl? + CidCusAl? sharper 

SrEuAgiiAlis + traceEuAgsAlfi 

(EuYb)iAgsAl6 (BaCdii) 

broadened NaZnn 
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APPENDIX B: SUMMARY OF SINGLE CRYSTAL REFINEMENTS ON VARIOUS TERNARY ALUMINIDES 
Refined Composition a (A) # uniq /obsvd* 20niax R, wR filename reaction Structure 

reflections (degrees) (F^^4arFft)) fdir) nb# : p# Type 

Compounds 1-24 all form the NaZnu s ructure, in space group Fm3c (no. 226). 

1, BaCU5.27Al7,73 12.205 (4 117/115 60.0 0.0186,0.0452 [uS]bacuall 1:49,75-77 

2. BaCus.66Al7.33 12.134(1 128/110 60.0 0.0290,0.0710 [u5]knbcaol 3:111,4:18 (xtal 55) 

3. BaCu6.iAl6.9 12.061 (1 55/45 50.0 0.0143, 0.0300 [u5]cr901 4:9, xtal 51 

4. BaCus.41Al7.60 12.167(1 63/59 45.0 0.0181,0.0264 [u5]str577s 4:89, 105, 5:5 

5. BaCus.4gAl7.s2 12.169(1 63/59 45.0 0.0237,0.0493 [u5]str578s (C 

6. BaCu5.s2Al7.4g 12.168(1 63/59 45.0 0.0162,0.0288 [u5]str580s 

7. BaCu6.09Al6.91 12.084(1 82/82 50.0 0.0219,0.0542 [u6.bacual]655raw 

8. BaCu5.42Al7.sg 12.154 130/130 60.0 0.0437 0.0975 [u5.bacualo] cent 

9. SrCu6.t7Al6.g3 11.980(1 125/111 60.0 0.0315, 0.0674 [u5]knlOcent 1:113,124 

10. SrCu6.oAl7.o 11.980(1 110/96 60.0 0.0442,0.0927 [u5]knllc 2:3, 19 

11. LaCu5.9Al7,i 11.965(1 125/113 60.0 0.0170,0.0398 [u5]lcacent 1:115,2:3,96 

12. LaCu6.07Al6.93 11.913(1 61/59 45.0 0.0163,0.0329 [u5]str5901 5:11,3:128 (syn) 

13. LaCu6.12Al6.88 11.916(1 61/59 45.0 0.0236, 0.0563 [u5]str591m it 

14. LaCu6.11Al6.g9 11.915(1 78/73 50.0 0.0223,0.0420 [u5]str592t a 
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Refined Composition a (A) #uniq/obsvd* 20niax 
reflections (degrees) 

IS. EuCU6.4Al6.6 11.928(1) 124/117 60.0 

16. EuCuti.iaM.s? 11.936(1) 61/59 45.0 

17. EuCu5.93Al7.05 11.940(1) 61/59 45.0 

18. BaAg3.oAlio.o 12.100(1) 127/115 60.0 

19. BaAg5.8Al7.2 12.665 (1) 93/88 50.0 

20. BaAgj.53Al7.47 12.677 (1) 93/89 50.0 

21. SrCeCu7.34Ali8.6s 11.938(1) 78/69 50.0 

22. BaSrAgi2.4Ali3.6 12.705(1) 95/93 50.0 

23. BaSrAgi2Ali4 12.689(1) 93/93 50.0 

24. BaEuAgi4Alt2 12.727(1) 95/92 50.0 

25.BaPd3.49Al9.s1 a = 8.731 (1) 
c= 12.494 (2) 

250/195 50.0 

26. SrAus.96Al(t.34 a = 8.729(1) 
c = 12.470 (2) 

469/341 50.0 

27. CUAI2 a = 6.063(1) 
0 = 4.869(1) 

102/93 65.0 

R, wR iBlename 
fdirl 

reaction 
nb#: p# 

0.0218, 0.0554 [u5]knl2a 2;37 

0.0204, 0.0436 [u5]ecas2 5:9 

0.0165,0.0353 [u5]eucualsn 5:9 

0.0305,0.0596 [u5]baagal2c 

0.0433,0.0813 [u5]knl6c 

0.0222,0.0501 (u6]str599 5:18 

0.0243 0.0616 [u6.cesrcual]str601 

0.0165 0.0312 [u6.basragal]str608 

0.0139 0.0249 [u6.basragal]str608a 

0.0139 0.0271 [u6.baeuagal]str609 

0.075,0.187 [u6.bapdal]i4mcm 

0.0643,0.1250 [u6.sraual]str636 

0.0266,0.0624 [u6.cual2]cual2 

Structure 
Type 

BaPdiM 

SrAufiAl^ 

CuAl2 
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Refined Con^osition a (A) #uniq/obsvd* 20max 
reflections (degrees') 

28. YCUj.66Al6,33 

29. YCU5.64Al6,36 

30. HoCU4,7Al7.3 

31. EuAg4.j7Al($.33 

32. EviAg5.i8Ais.g2 

33. LaAg(i.37Al4.e3 

34. LaAg4.3AJ6,7 

35. EuYbAgn.88AIio.i2 

36. La|.9oAg7.34Al9.6 

37. EuNiAla 

38. EuNiAl3 

a = 8.666 (14/mmm) 119/112 50.0 
c = 5.096 

a = 8.664 (M/mmm) 119/101 50.0 
c = 5.098 

a = 8.708(I4/minm) 190/170 60.0 
c = 5.128 

a = 11.047 (14,/amd) 354/324 60.0 
c = 7.167 

a = 11.055 (14,/amd) 349/294 60.0 
c = 7.116 

a = 11.006 (I4i/amd) 214/202 50.0 
c = 7.071 

a = 11.066 (14,/amd) 218/157 50.0 
c = 7.106 

a = 11.053 (14,/amd) 218/172 50.0 
c = 7.107 

a = 9.394(1) (P63/mmc) 267 / 195 50.0 
c = 9.146 (2) 

a = 4.268 (14/mmm) 74/73 50.0 
0=11.381 

a = 4.267 (14/mmm) 74/74 50.0 
c= 11.382 

R, wR filename 
m 

reaction Structure 
nb#: p# Type 

0.0261 0.0626 [u5.hocual]str5941 

0.0309 0.0688 [u5.hocual]str593t 

0.0307 0.0663 [u5.hocual]cent 

0.0361 0.0910 [u5.euagal]euagal 

0.0206 0.0383 [uS.euagal]euagal2 

0.0271 0.0532 [u6.1aagal]str604 

0.0438 0.0784 [u6.1aagal]str600b 

0.0322 0.0588 [u6.euybagal]str607 

0.0385 0.01027 [u6.1aaga]]str600 

0.0149 0.0314 [u6.euniai]str605 

0.0304 0.0642 [u6.eunial]str606 

ThMnia 

ThMni2 

ThMnj2 

BaCdi 1 

BaCdii 

BaCdii 

BaCdii 

BaCdii 

Th2Ni,7 

BaAU 

BaAU 
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Refined Composition a (A) #uniq/obsvd* 20max 
reflections (degrees') 

39.Ta4Co2.5Al5.5 

40.Dy3Au2,2Al8.8 

41. Dy3Au2.iAI«.9 

42. EuAiio.7sAl3 .25 

43. Gd«Ag2o.8sAl6.75 

44. Gd6Ag2o.8Al6.7 

45. Gd6Ag|9.83All 1.74 

a = 4.976 (P63/mmc) 119/107 60.00 
c = 8.091 

a = 4.261 (Immm) 295/226 50.0 
b = 9.953 
c = 12.526 

a = 4.262 (Immm) 295/253 50.0 
b = 9.941 
c = 12.552 

a = 4.318 (I4/nimm) 77/64 50.0 
c= 11.165 

a = 9.223 (P63/mmc) 261/221 50.0 
c = 9.446 

a = 9.224 (P63/mmc) 261/? 50.00 
c = 9.442 

a = 9.223 (P63/mmc) 261/? 50.00 
c = 9.444 

• observed means (Fo ^ 2a (Fo)) 

R, wR filename 

(FUioxED) m 
reaction Structure 

nb#: p# Type 

0.0183 0.0338 [u5.tacual]knta MgZn2 

0.0363 0.0769 [u6.dyaual]str617 La3 All I 

0.0253 0.0589 [u6.dyaual]str638c LasAli I 

0.0277 0.0612 [u6.euaual]str633 

0.0268 0.0436 [u6.tbagal]str619 

0.0233 0.0471 [u6.tbaga]]str621 

0.0187 0.0418 [u6.tbagal]str632 

BaAU 

ErZns 

ErZnj 

ErZns 
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APPENDIX C: REFINED LATTICE PARAMETERS FROM 
X-RAY POWDER DATA 

Conqwund Lattice parameter(s) A powpat# nb#-?# single crystal 
filename 

BaCusjAl?.? 
BaCus.5Al7j 
BaCueAl? 

a =12.205(4) 
a =12.180(3) 
a =12.102(4) 

0371A 
0344 

1-49 
4-89,105 
5-

bacuall 
3- str577 
str655 

SrCufiAl? 
HuCu^.sAlsj 
LaCu^Al? 

a= 11.975(1) 
a= 11.977(1) 
a= 11.952(4) 

0161b 1-113,124 knlOcent 
knl2a,ecas2 
Icacent 

BaCueGa? • 
BaCueIn? * 

a =12.026(2) 
a =12.739(4) 0246 4-69 

BaAg5.8Al7j 
SrAgs^Alrs 
Ba^jGars * 
BaAg5.5ln7.5 * 

a =12.666(3) 
a =12.605(6) 
a =12.757(3) 
a =13.442(3) 

0299b 
0302a 

knl6c, str599 

post-aii(BaSr)Ags.5Al7.5a= 12.627(1) 
pre-an'Ba-Ag-Al' a =12.645(1) 
pre-an'Sr-Ag-Al' a =12.594(3) 

0396c 
0396b 
0396b 

5-
5-
5-

str608,str608a 

(BaSr)Cu6Al7 
pst-aii(BaEu)Ag55Al7^ 
pst-anCBaGd)Ag5^Al7^ 

a =12.074(2) 
a= 12.730(1) 
a =12.764(3) 

0313 
0306b 
0308b 

5-
5-25 
5-2 

str609 

CuAfc a = 6.066(2) 
c = 4.877(3) 

0368c 5- cual2 

Sn]3Au2Al9 a = 4.305(4) 
b= 10.064(3) 
c= 12.733(2) 

0356c 5-

GdsAuaAfc a = 4.275(1) 
b = 9.978(1) 

c= 12.602(1) 

0356b 5-
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ThsAuzAls 

Dy3Ai]tAl9 

Yb3Au2Al9 

LaAuAla 

BaPd4Al9 

GdsAgioAls 

a = 4.276(3) 
b = 9.970(5) 

c= 12.583(8) 

a = 4.267(1) 
b = 9.974(2) 

c = 12.573(4) 

a = 4.251(3) 
b = 9.952(5) 

c = 12.522(9) 

a = 4.355(1) 
c= 10.887(1) 

a =8.741(4) 
c= 12.538(1) 

a = 9.232(2) 
c = 9.456(3) 

181 

0368a 

0333a 

0366a 

0367c 

0269A 

5-

5-

4-106 

str617 
str638c 
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APPENDIX D: ELECTRONIC STRUCTURE, SUPERCONDUCTTVITY, 
AND SUBSTITUTION PATTERNS IN TlsTcs 
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ABSTRACT 

TlsTes adopts a common intermetallic structure type (CrsBs), and shows a superconducting 
transition at 3 K. Based on the structure of UsTes, twenty percent of the thalliimi atoms 
show crystal chemical behavior consistent with Xl""^, according to the formulation 
Ti+2(Ti+^^(Te-2)j xhese Tl^^ atoms are susceptible to disproportionation into Tl"^ and Tl^V In 
order to explore this aspect of the electronic structure of llsTes and to investigate potential 
mechanisms for superconductivity, semi-empirical electronic calculations were carried out on 
this compound. Recent experiments illustrate that Sn, as well as Bi, Pb, and Cu, can 
substitute for one-fifth of the thallium atoms to give SnTUTes. Both thallium sites are 
substituted by Sn according to the formula (Sno.8Tlo.2)(Sno.2oTl3.8o)Te3. Energy density of 
states and crystal orbital overlap population curves for observed and hypothetical 
substitution patterns are examined to assess the electronic stability of these phases and to 
account for the observed arrangement. 
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Two important problems involving the electronic structure of matter are the so-called 

"coloring problem", and the identification of electronic instabilities. The first addresses how 

two or more different elements may arrange themselves in a given structure, as found, for 

example, in AS4S4 or S4N4 as well as the B-C arrangement in tetragonal borocarbides 

MB2C2 (M = Ca, La...)[la]. AS4S4 and S4N4, Figure la, adopt the same cage structure with 

the sulfur atoms respectively occupying the two- and three-coordinate sites (shaded) in these 

molecules. For these 44 electron molecules, the two-coordinate sites are preferred for the 

atom in the pair with the greater Pauling electronegativity (X). Since X(As) < X(S) < XCN), 

we can account for the site preference in AS4S4 and S4N4. In MB2C2, two arrangements 

have been theoretically examined, see Figure lb. Calculations suggest the alternate 48^ 

network (left) to be preferred, although crystallographic analysis realizes the borocarbide net 

on the right. Unlike molecules, quasi-infinite solids offer fi^ctional occupancies of sites, as 

in BaCu(Cui/3Al2/3)i2 [lb] which can make any theoretical analysis of this coloring problem 

quite complicated. The second problem, instabilities in the electronic stmcture, involves 

features of a spectrum that suggest a phase transition will take place. This transition may be 

structural, i.e. displacive, or electronic, as to a superconducting or charge density wave 

state. We have shown how energy band theory and the Landau theory of second-order phase 

transitions provide a complete analysis of the tetragonal-monoclinic distortion of CaAU [2]. 

In this article, we shall examine a system that offers both problems for study. 

TlsTea, InsBis, and the substitutional derivatives MTUTes and M"In4Bi3 

(Nf= Cu, Sn, Ag and M" - Sn, Pb, Ga) are all superconductors with critical temperatures 

ranging fi-om 2.2 - 7.0 K [3]. Wth the recent explosion in research on high-Tc 
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superconductors to understand their electronic structures and postulate the mechanism(s) of 

superconductivity, even these low-Tc compounds evoke interest. Some of the recent work 

done by chemists has focused on the coupling of structural and electronic instabilities in 

materials which undergo the superconducting phase transition [4]. This work examines the 

electronic structure and bonding of the family of compounds MTUTes in an effort to 

elucidate the nature of the superconducting phase change at low temperatures. 

TlsTes , InsBis, and TlsSes are three compounds from the CrsBa family of 

intermetallic phases with several important differences from the majority of examples. 

Among the M5X3 systems forming the CrsBs structure listed in Pearson's Handbook [5], M 

is an alkaline earth or rare earth metal and X is a group 13 or 14 element in about 70% of 

the binaries. Recent work by Corbett et al. [6], however, indicates that many of these phases 

are really ternary hydrides. TlsTes, InsBis, and TlsSes have M components from group 13, 

and X from group IS or 16, making both M and X post transition elements. There are also 

some structural features of these three compounds that are different from many of the 

remaining CrsBs compounds. The CrsBs structure is body-centered tetragonal {J4/mcm\ 

and most examples have c/a ratios near 1.90, but the da ratios of TlsTes and InsBis are 1.41 

and 1.48, respectively. Also, the minority component (X) often forms dimers in addition to 

isolated atoms, but Te, Se, and Bi in these three exceptional examples do not. 

The TlsTes structure contains four crystallographic sites: T1(A) atoms, Wyckoff site 

4c {4/m (C#A) point symmetry); T1(B) atoms, site 161 (m (G)); Te(C) atoms, site 4a 

{422ip^\ and Te(D) atoms, site 8h {m.2m{C2^). In Table 1 the first coordination spheres 

aroimd T1(A) and Ca(A) (in CasSis) [7] are compared. In CasSis each Ca(A) is surrounded 
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by a distorted octahedron of Si atoms with 4 short contacts in the waist (the ab plane) and 

two longer distances to the axial Si(C) atoms, whereas in TlsTes the coordination of TI(A) 

shows four long equatorial Tl(A)-Te(D) and 2 shorter axial n(A)-Te(C) bonds. In feet, 

these octahedra share vertices to form a three-dimensional ^oCTlTe^z] net. However if we 

consider just the shortest bond distances in each octahedron, the 4 short interactions in 

CasSis form a ^a,[CaSi4a] layer in the ab plane, while the two short axial bonds in TlsTes 

form '«[TlTe2/2] chains parallel to the c- direction. It is precisely this structural feature of 

TlsTes that we highlight in this investigation. 

With a Tl-Tcax : Tl-Teeq distance ratio of 0.937, the structure of TlsTes can also be 

described as [TlTesalTU. The [TlTe6/2] substructure is an ReOs-Uke, three-dimensional 

network of vertex-sharing, Tl(A)-centered, slightly compressed octahedra, shown in Figure 

2a. The remaining T1 atoms, T1(B), form square antiprisms around the Te(C) atoms and 

tetragonally compressed cubes aroimd the T1(A) sites as shown in Figure 2b. Furthermore, 

the shortest Te-Te distance (4.01 A) is greater than twice the van der Waals radius of Te 

(2.0 A), making each tellurium isolated from other tellurium atoms, and formally Te'̂  

according to the Zintl-Klemm [8] concept. The shortest TI-Te bond distance is 3.147 A 

between T1(A) and Te(C) sites, and the next shortest bond distance is 3.159 A between 

T1(B) and Te(D) sites. Each T1(A) atom is surrounded by 6 Te atoms, and the distance to the 

nearest Tl(B) atoms is 3.954 A, which implies weak metal-metal interaction. Each T1(B) 

atom has one short bond to a Te atom (3.159 A), while the remaining distances to Te are 

longer (3.390 A, 2x; 3.600 A, 2x), and the 
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T1(B) - T1(B) separations are 3.458 A and 3.496 A. These bond distances and coordination 

environments around each atom suggest the ionic formulation 

Tl"^(Tl"^)4(Te-^)3. 

Besides the crystallographic evidence for two kinds of T1 atoms in the structure, 

further support for the assignment of formal charges comes from a Mulliken population 

analysis carried out on the two Tl sites (A and B) in the structure. The Mulliken population 

of T1(A) is 2.126 (i.e. Tl^ "^), and the four other T1(B) atoms have a population of 2.429 

Thus, the more oxidized T1(A) site was assigned formally Tl"^^ and the less 

oxidized TT"\ TO confirm our assignment of formal charges in TlsTes, Mulliken population 

analyses were carried out on several compounds winch contain Tl"^ and Tl"^^. These 

included TIS, TlSe and TliTes [5]. In these three structures, Tl*^ and Tl"^^ had average 

Mulliken populations of 2.422 and 1.578 respectively, which are consistent with our 

assignments of the TT^^ (2.429) and Tl^^ (2.126) in TlsTcs- Recall that a Mulliken population 

analysis divides the '1x)nd charge" equally between the two components, which generally 

overestimates the electron density at the "cation". 

Electronic Structure of TlsTea 

We begin with a description of the electronic structure of TlsTes, as evaluated using 

the Extended Huckel method within the tight-binding ^proximation. Details of the 

calculations are described in the Appendix. The total DOS curve for TlsTes (the Fermi 

energy is indicated by the dotted line at -7.45 eV) is shown in Figure 3a. There is no gap, 

i.e. N(Ef)  ̂0, observed at or near the Fermi ener^, which is consistent with the metallic 
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behavior of TlsTes above its superconducting critical temperature (3.3 K) [3]. The feirly 

narrow band between -16.0 and -14.0 eV may be assigned to the Te 5p orbitals, which 

remain close to the energy of the atomic orbitals themselves (Te 5p = 

-14.80 eV). The region between -12.0 and -6.0 eV are states associated with the T1 atoms 

(both TI(A) and T1(B)) in the structure whose 6s and 6p atomic orbital energies are -11.80 

eV and -5.80 eV respectively. The shaded regions of the total DOS curve correspond to 

states associated with the T1(A) and Te(C) atomic orbitals and are widely dispersed 

throughout the curve. States associated with the TI(A) atoms contribute to the majority of 

the DOS near the Fermi energy. The DOS region betwe«i -12.0 and -5.0 eV is expanded 

in Figure 4, with the T1(A) (left), and T1(B) (right) atomic contnbutions shaded. The states 

associated with the T1(A) atoms lie higher in energy than the T1(B) states (many are above 

the Fermi level), v^^ch supports the idea that the TI(B) atoms are more reduced (Tl""^) then 

the T1(A) atoms (Tl*^). 

The COOP curve for the Tl(A)-Te(C) interaction along the chain is shown in Figure 

3b. At the Fermi energy -7.45eV (33 valence electrons/formula unit), some levels with 

antibonding character are filled. The Tl(A)-Te(C) overlap population of 0.20, compared 

with the TI(A) - Te(D) overi^ population of 0.07 is another indication of the strength of the 

Tl(A)-Te(C) interactions. As further evidence of the tendency for the tetragonal 

compression of these "TlTee" octahedra within TlsTes, the overlap populations for the T1(A) 

- Te(C) and T1(A) - Te(D) interactions were calculated using a Itypothetical structure in 

which the two bond distances are equal at3.36lA. The overlap population for the T1(A)-

Te(C) interaction was 0.14, and 0.08 for the T1(A) - Te(D) interaction, confirming that even 
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when the bond lengths are set equal in the calculation, there is still a tendency for the 

octahedra to be compressed based on the differences in overlap populations. 

The complete structure of TlsTe3 can be described as an overlapping combination 

[9] of two partial structural frameworks, (1) the Tl(A)-centered, Te octahedra forming a 

^«,[TlTe6/2] partial structure, reminiscent of ReOs, and (2) a ^corTUTes] partial structure, 

involving just the n(B) atoms. The DOS curves for the two individual frameworks are 

shown in Figure 5 (left and middle), and if these two curves are superimposed, the 

resulting plot is very similar to the total DOS for TljTes (right). This effect on the T1 orbital 

contribution to the total DOS indicates that both T1(A) - Tl^) through-space interactions 

(overlap population of -0.02) and T1(A) - Te - T1(B) through-bond interactions are very 

weak. Since much of this electronic structure investigation will focus on the pseudo-one-

dimensional chains ^oo(TlTe4/2)Te2/2], the fact that this partial structure is not strongly 

influenced by the surrounding T1(B) atoms is an important observation. 

Superconductivity in TlsTea 

Band Structure: To further investigate the electronic structure of TlsTes with respect to 

potential electronic instabilities, its band structure along high symmetry directions in 

reciprocal space in the space group I4/mcm was calculated. The body-centered tetragonal 

Brillouin zone is shown in Figure 6 (top), and the band structure for the directions 

r->M->r-^X->P-^N->r is shown in Figure 6 (bottom). Since the Fermi level intersects 

bands along directions both parallel and perpendicular to c'*', the electrical conductivity is 

three-dimensional. An interesting section of the band structure is along X-^P-»N, where 

the calculated Fermi level intersects bands close to a degeneracy at point P. This band 
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degeneracy persists with very little dispersion (± 0.2 eV) as we move across the fece of the 

Brillouin zone from P->N, and breaks upon moving from N->r. While TlsTes is strictly not 

a one-dimensional system, the band structure from X->P represents the section of the 

Brillouin zone parallel to the n(A)-Te(C) chains of interest, and has characteristics 

reminiscent of a Peierls instability. The Paerls distortion is a well-known phenomenon in 

one-dimensional systems when there is a half-filled band. In the case of a classic Peierls 

distortion, the chain distorts into dimers to break the degeneracy at the Fermi energy, which 

lowers the energy of the filled band and creates a gap between the highest filled band and the 

lowest unfilled band. In TlsTes, states near the Fermi level are coupled by the wave vector 

c*/2, (states along the P - N line have kz = ±c*/4) and in the next section we investigate 

potential distortions consistent with this wavevector. 

Another interesting section of the band structure is the area surrounding F where a 

hole pocket is observed as the highest occupied band rises above the Fermi energy. A 

corresponding electron pocket is observed near N, where the lowest unoccupied band dips 

below the Fermi energy. It is unclear whether a Peierls-like distortion in TlsTes would lead 

to a more energetically favorable structure: none is observed at 293 K [3], but point P 

(where the Femri energy crosses very near a band degeneracy) is a point of electronic 

instability in the structure. 

Frozen PhonoD Calculations: According to the band structure, a structural distortion 

with the wavevector q = 1/2 c* can couple states on the Fermi surface, since the Fermi 
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level intersects bands along the P - N line; q is a Fermi sur&ce nesting vector [10]. Another 

important aspect of the electronic structure of TlsTej is the assignment of T1(A) as Tl^^ 

because of the possible disproportionation of Tl"^^ into Tl"^ and Tl""^, (gas phase value of 

AHdisp = -4.92 eV ) which may drive a structural distortion or be involved with the 

mechanism of superconductivity, or both. The electronic instability of the Tl"^ could 

manifest itself in a charge density wave, or the long range pairing of electrons, which 

according to BCS theory leads to superconductivity. Simon [4] has presented the idea that 

charge disproportionation in systems similar to TlsTes could be an electron-pairing 

mechanism. Tight-binding calculations cannot provide reliable quantitative information of 

dynamic processes like vibrational modes in solids (phonons) or charge density waves. 

Nevertheless, static models, i.e. "frozen phonon" calculations can be used within the 

framework of perturbation theory to probe structural instabilities associated with electronic 

instabilities in the DOS. 

In order to explore the nature of potential structural distortions driven by both a 

disproportionation of Tl"^^ and the Fermi surface nesting vector q = 1/2 c*. Extended 

Hiickel calculations were performed on four hypothetical structural models which are all 

derived from the 14/mcm TlsTes structure. These four structures involve different shifts of 

the Te(C) atom(s) along the Tl(A)-Te(C) "chains" parallel to the c-direction, (see Figure 

7). We have included displacements which break the body-centering symmetry in order to 

consider the possibility of detectable coupling between the chains. The space groups of the 

four hypothetical structures are subgroups of 14/mcm [11]. Included in Figure 7 are the 

designations t2 or k2, with t and k meaning translcOionengleich (lattice-equivalent) and 
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klassengleich (class-equivaleat) respectively. The number associated with either / or Ar, in 

this case 2, means that I4/mcm has twice the number of symmetry elements as the four 

subgroups I4/m, I4cm, P4/mbm, P4/ncc. In each of the four models represented in Figure 

7, the two chains of octahedra demonstrate the relationship between the T1(A) - Te(C) 

"chains" running along the unit cell edges and through the unit cell center, in the c-direction. 

I4/m and P4/mbm structures are based on symmetric, but opposite shifts of each Te(C) 

atom which results in the alternation of tetragonally compressed and elongated octahedra 

around the n(A) atoms. In both I4/m and P4/mbm the distortion gives two inequivalent 

T1(A) sites according to the disproportionadon of Tl^^. I4cm and P4/ncc models are 

structures resulting from a shiit of each Te(C) atom in the same direction. This shift creates 

one long, and one short axial T1(A) - Te(C) interaction, resulting in T1(A) -Te(C) "chains" 

of unsymmetrically compressed octahedra, but not exactly square pyramids: all T1(A) sites 

remain equivalent. In all four distorted structures, the original unit cell lattice parameters 

and origin are retained. In the calculations, the Te(C) r-coordinate was altered from z = 

0.25 to between z = 0.23 and 0.27 to simulate a change in Tl(A)-Te(C) bond length from 

3.147 A to between 2.895 A and 3.399 A. 

Table 2 compares the differences in total energies and Fermi energies between the 

undistorted I4/mcm structure and the four distorted structures {I4/m, I4cm, P4/mbm, 

P4/ncc), as well as the second derivative d^E/du^, where u is the shift in the T1(A) - Te(C) 

bond distance. These results are plotted in Figure 8 as d^E/du^ vs. u (A) for the four 

distortions. If the potential were indeed harmonic, the second derivative (d^du^), should be 
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independent of u, and would correspond to a T1 - Te stretching force constant. But, there is 

certainly a weak anhannonic term which contributes to the softening of this mode. 

The total DOS curves for the distorted structures retaining a body-centered lattice 

{I4/m and I4cm) were similar to the undistorted TlsTes curves, shown in Figure 9. The I4/m 

and I4cm DOS curves look neariy identical to the I4/mcm curve. Since the DOS for 

structures where the only difference is the retention or loss of the body-centering symmetry 

(i.e. l4/m and P4/mbm) are very similar, this coupling between neighboring "chains" running 

in the c-direction is negligible. Based on the results of these calculations there is no 

indication that one of these distorted structures is preferred electronically over the 

undistorted structure. The total energies per formula unit drop slightly for the distortions 

that mimic disproportionation effects, i.e. 2T1''̂  + Tl'̂ V On the other hand, the 

undistorted structure has the lowest Fermi energy. Shifts in the Fermi level arise from 

changes in the coordination at the T1(B) sites (the majority T1 component). Therefore, while 

the total energy reveals a slight preference for either distorted structure, the energy changes 

associated with the states near the Fermi level counteract this. 

Lattice Energy Calculations: Although the band structure seems to support the idea of 

an electronic instability driving a structural distortion, the results of our Extended Huckel 

calculations do not unequivocally reveal a more stable structure than the I4/mcm structure. 

To investigate e£fects from other forces, changes in lattice energies were also calculated as a 

function of the distortion of the Te(C) position to the P4/mbm and I4/m structures, using 

the following summation of relevant energy terms [12] 
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Ulai^^ UMAD+UBI^T+UVDW 

ULAT is the total lattice energy (ULAT is the enthalpy change for the process TLSTES (S) 

TR^(G) + 4Tl'''(G) + 3Te'̂ (g)), UMAD is the Madelung term Gong range, net attractive ionic 

interaction), UBM is the Bom-Mayer term (short range, repulsive interaction), and UVDW is 

the van der Waals term. Further details of the calculations are given in the Appendix. The 

results for the P4/mbm structure (see Figure 10), are plotted as changes in energy (AU) with 

respect to the displacement of the Te(C) atom, z (Te(C)), where 

AU(z = 0.25) = 0.0 eV; (the curves for the I4/m structure are very similar). Upon changing 

z (Te(C)), the Madelung and the van der Waals terms both sum positively to yield an 

increase in lattice energy (lower potential energy), but the Bom-Mayer repulsion term is 

sharply negative. These two forces are competitive in this case, with the Bom-Mayer term 

exerting the greater influence. Thus these distortions are un&vorable. Based on these 

results, stmctural distortions driven by electronic instabilities may be strongly resisted by 

near-neighbor short range repulsions. The electronic instability in the band stmcture, 

therefore, manias itself in a superconducting transition. Formation of Cooper pairs, which 

involves electrons near the Fermi level, can arise by coupling of occupied and unoccupied 

states via the wave vector q = c*/2. 

SnTUTcs Calculations 

Recently, several ternary phases with the composition MTUTes (M= Sn, Pb, Mo, and 

Cu) [13] have been reported. In the cases of M = Cu or Mo, however, the formulation 

MTUTes is misleading for two reasons: (1) the actual compositions as refined by X-ray data 
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are Cuo.TTUjTes and Moo.6Tl4.4Te3; [13a] and (2) the Cu and Mo statistically occupy both 

the T1(A) and T1(B) sites as defined in TlsTcs- In the case of SnTUTes, Sn*  ̂is expected to 

substitute on the T1(A) site, but ciystallographic evidence reveals a small amount of Sn 

mixing on the T1(B) site, according to the formulation (Sno.8Tlo.2)(Tl3.8Sno.2)Te3 [13b]-

The refined unit cell parameters and c/a ratios of TljTej and SnTUTes are as follows; 

TlsTes, a=8.930A, c=12.589A, c/a= 1.41; and SnTUTes, a=8.819A, c=13.013A, c/a= 1.47. 

This shortening of the a-axis and lengthening of the c-axis as Sn replaces T1 changes the 

coordination of the Sn atom in the T1(A) position slightly. The two axial bonds (3.253A) 

are still shorter than the four equatorial bonds (3.300A), dax/deq = 0.986, but the diflference is 

not as pronounced as in TlsTes (d«/deq = 0.936). 

In SnTUTes, Sn"  ̂ (unlike TI""  ̂ in TlsTes) would lead to a closed subshell 

configuration (s^p°) for each of the elements in the compound, and we may at first expect 

semiconducting behavior. The total DOS curve for SnTUTes with Sn completely occupying 

the 4c site is shown in Figure 11, and the calculated Fermi energy Ms in the gap between -

6.0 and -7.0 eV. However, SnTUTes is a superconductor below 3.3K, and a metal above 

3.3K. These experimental obsen^ons coupled with the crystallography present a 

challenge to the understanding of the chemistry of the Sn substituted TlsTea s5rstem. In 

particular, what controls the substitution pattern of Sn onto the crystallo^phically 

inequivalent T1 positions? Three approaches to investigating the SnTUTes composition and 

site occupations were considered; (1) possible vacancies in the Sn occupation of the 

T1(A) site making the composition Sn^xTUTes, (2) sub-stoichiometric substitution 
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of Sn on the T1(A) site: (Sni.xTlx)Tl4Te3, and (3) Sn occupation of both T1(A) and 

T1(B) sites such that the composition SnuoTUTes is still appropriate. 

For the first scenario, a series of calculations in v^ch the Sn occupation of the T1(A) 

position was varied firom 0.25 to 1.0, (compositions ranging firom Sno^TLjTes to 

SnTUTes) was carried out. The fiilly occupied model, SnLoTUTes, is strikingly unfavorable 

with respect to Sno.75Tl4Te3 (the structure with 25% vacancies at the n(A) position) and Sn 

: AE = -I.24eV. Analysis of the overiap population for the Sn - Te(C) bonds parallel to the 

c-axis, shows a significant increase in these values fi-om Sni.oTUTes to Sno.TsTUTes as a -

antibonding crystal orbitals are depleted of electrons. Furthermore, Sno.vsTUTes is 

energetically fevored against disproportionation to both SnLoTUTes + Sno.5oTl4Te3 (by 

0.26eV), and SnuoTUTes + Sno.oTl4Te3 (by 1.28eV). However, the SnxTUTes system gains 

energy by lowering x. Therefore, we conclude that the strong Sn - Te(C) o - antibonding 

orbital interactions provide the energetic driving force against Sn^oTUTes. Although our 

results provide no conclusive support for a specific vacancy concentration, we do find that 

Sn enters the structure as Sn"  ̂and not Sn*" .̂ Therefore, we examined two other models of 

Sn and T1 distribution. 

Extended Huckel calculations relating to the second possibility, i.e., partial Sn 

substitution on the T1(A) position, were performed on systems (Sni.xTIx)Tl4Te3, where x = 

0.0, 0.25, 0.5, 0.75, and 1.0. The two endpoints, where x = 0.0 and 1.0, represent either 

complete Sn or complete T1 occupation of the T1(A) site, whose DOS curves are plotted in 

Figures 11 and 3a respectively. Based upon the position of the respective Fermi levels, the 

two materials would be predicted to have very different physical properties. If x = 1.0, the 
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material is TlsTes, and the Fermi energy falls near the top of the large band from -12.0 to -

6.0 eV, in good agreement with the observed metallic and superconducting properties. But, 

if X = 0, all the T1(A) sites are occupied with Sn, and the Fermi energy fells in a gap. This 

would imply semiconducting behavior which is incongruous with the observation that 

SnTUTes is metallic and shows a low temperature superconducting transition. In the three 

cases where x = 0.25, 0.5 and 0.75 and both Sn and Tl atoms occupy the T1(A) position, the 

Fermi energy (-7.4 ± 0.1 eV in all three cases) drops into the band between -12.0 and -7.0 

eV, and states near the Fermi level have metal (Sn and Tl) character. This is good evidence 

that upon mixing of even a small amount of Tl and Sn on the T1(A) position, the calculated 

Fermi energy is in much better agreement with the observed physical properties. 

As an extension of the ideas presented just above, it may be that even with the 

mixing of Sn and Tl on the T1(A) site, the overall stoichiometry may remain SniTUTes by 

allowing for some Sn mbdng on the T1(B) position also. Our third approach involves a 

carefiil look at the bonding and electronic differences between Sn completely substituting on 

the T1(A) site, or partially occupying both T1(A) and T1(B) sites in the structure, i.e., (Sni. 

xTlxXTl4.xSnx)Tl3, 0 < X < 1. One way to evaluate the difference in site preferences within 

these models is to evaluate site pot^itials using Madelung calculations [14], In both 

structures, SnTUTes and TlsTes, the T1(A) site has a larger site potential than the T1(B) site, 

which supports our assignment of the formal oxidation states as T1(A)'̂  ̂ and 

Tl(B)'"\Therefore we would expect all the Sn to substitute as Sn""  ̂ on the T1(A) sites, using a 

purely ionic model. 
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Extended Huckel calculations were carried out on different arrangements of the Sn 

and T1 atoms from SnTUTes to n(n3.oSni.o)Te3. In each calculation, the complete 32 atom 

unit cell was used, and the electron count and number of k-points remained the same. A 

rigid band model for the mixing of Sn from the T1(A) sites onto the T1(B) sites would be 

appropriate only if the features of the DOS curve remained the same for each Sn 

configuration. We find, however, that it is not appropriate for this series of calculations 

based on the significant changes in the DOS curves as the Sn substitution pattern changes. 

The most notable change in the DOS curves is the disq)pearance of the gap between -6.0 

and -7.0 eV. The results of the calculations are summari  ̂ in Table 3 and Figure 12, 

showing the DOS curves with Fermi energies for three cases; (a) SnTl4Te3; (b) (Sno.vsTlo^X 

Tl3.75Sno^)Te3; and (c) (SnojoTlo.5o)( Tl3.5Sno.5)Te3. There are several noteworthy trends in 

the computational results. First, as the ratio of Sn on the T1(A) site to Sn on the T1(B) site 

decreases, the total energies and Fermi raergies decrease, indicating a stabilization of the 

structure upon the substitution of Sn onto the T1(B) site(s). Second, the energy gap at the 

Fermi energy in the DOS for Sni.oTUTe3 (Figure 12a) disappears as the Sn concentration on 

the Tl^) site relative to the T1(A) site increases as in (Siio.75Tlo.25)( Tl3.75Sno.25)Te3 (Figure 

12b), and (SnojoTlo.5o)(Tl3.5Sno.5)Te3 (Figure 12c). 

To understand why this occurs, recall that the Sn 5p atomic orbitals (-8.32 eV) lie 

lower in energy than the T1 6p atomic orbitals (-5.80 eV). Also the two shortest 

M-Te interactions in the structure are 3.148A (M(B) - Te(D)), and 3.253A 

(M(A) - Te(C)). In Sni.oTUTes the states just above the Fenni energy are associated with 

the T1(B) atoms, and the states just below the Fermi level are mostly Sn(A) character. 
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When Sn(A) atoms move to the T1(B) positions the energy of the Sn - Te antibondmg states 

just above the Fermi energy is lowered due to the lower Sn 5p orbital energy. Conversely, 

when T1(B) atoms move onto the Sn(A) sites the T1 - Te antibonding states just below the 

Fermi level are pushed up in energy. These T1(A) states contribute to a new peak near -

7.0eV, which spears in the DOS curves in Figures 12b and 12c but was not present in 

Figure 12a. Figure 13 highlights these features of the DOS curve of 

(Sno3Tlo.5)(Tl3jSno.5)Te3 due to the states associated with the T1 and Sn atoms that switch 

places. In Figure 13a the states with T1(A) charact  ̂are shaded in the peak at -7.0 eV, 

which is not observed in the DOS curve for Sni.oTUTes (Figurel2a). In Figure 13b Sn^) 

states are shaded just above the Fermi energy. 

Figure 14 contains two plots of the Madelimg energy (top) and the Extended 

Huckel total energy (bottom) vs. the Sn composition on the TI(A) position. The slopes of 

the two curves clearly oppose each other, and the magnitude of the slope of the Madelung 

curve is greater than that of the total energy curve. The negative slope of the Madelung 

curve indicates that it is un&vorable to move Sn from the T1(A) site to the T1(B) site, while 

the positive slope of the total energy curve means just the opposite, i.e. the total energy 

decreases as Sn is moved from the T1(A) to the T1(B) positions. Although the two trends 

oppose each other, the greater slope of the Madelung curve indicates that the destabilizing 

^ect of the Madelung term has a greater effect than the stabilizing effect on the total 

energy. The intersection of these two curves (near 50%) may provide an estimate of the 

optimal Sn distribution between T1(A) and T1(B) sites. The dotted curves which lie below 

each of the bold curves demonstrate the lowering of energy that is accompanied by the 
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inclusion of a configurationai entropy term. The calculation of the Helmholz free energy 

from the following expression, A = U - TS (where S=k InQ, and k = 8.617x10"® eV/K, with 

Q being the number of possible configurations), inchides a temperature dependent entropy 

term, which results in a lowering of both the total energy and Madelung energy as Sn atoms 

are moved from the T1(A) sites to the T1(B) sites. The two curves are for T = lOOOK, and 

^ect a shift on the intersection point of the total energy and Madelung energy from near 

50% to 60% Sn on the T1(A) site. 

Conclusions 

Although the results of the calculated band structure of TljTea show an electronic 

instability at the Fermi level due to orbitals assigned to the Tl(A)-Te(C) chains, lattice energy 

calculations reveal there are strong short range repulsive forces \^ch resist the shift of 

atomic positions. This frustration between pairwise interactions and states near the Fermi 

level may be directly related to the observation of a superconducting transition at low 

temperature, rather than a displacive structural distortion. 

In the calculations involving the ternary system SnxTls-xTes, our results support the 

idea that Sn and T1 occupy both the T1(A) and T1(B) positions in this structure. This atomic 

arrangement leads to an electronic structure which is in agreement with the observed 

physical properties. The driving force for the simultaneous mbdng results from a 

competition between classical ionic forces and quantum mechanical orbital oveiiap. 
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Appendix 

Extended Huckel calculations 

The electronic structure of TljTes is evaluated within the tight-binding, LCAO 

approximation using the extended Huckel method [15], The structural parameters for each 

of the two structures, i.e., lattice and positional parameters, were taken from the literature 

[3]. Density of states (DOS) and crystal orbital overlap population (COOP) curves were 

generated by summing over a set of 150 k-points in the irreducible Brillouin zone. The 

atomic orbital parameters [16] used for Tl, Sn and Te are ̂ ven in Table 4. Quasi-relativistic 

eflfects were considered for both heavy main group elements, consequently the s-orbitals 

were slightly contracted while the p-orbitals were slightly expanded. 

Lattice emrgy calculations 

The lattice energy ULAT can be expressed (approximately) as: 

ULAT » UMAD + UBM + UvDW-

For a detailed e^qilanation of each term see reference [14]. 
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Table 1: Structure Comparison of TlsTes with CasSis 

TlsTes CasSi3 

a A 
c A 

8.930(2) 
12.589(4) 

7.64(2) 
14.62(2) 

c/a 1.41 1.91 

M(A) 
M(A) 

-X(C) A 
-X(D) A 

3.147 (x2) 
3.361 (x4) 

3.66 (x2) 
3.09 (x4) 

Table 2: A comparison of relevant energies between undistorted TljTea and the four 
distorted structures. 

Space Group Second Derivative (d^E/du^"  ̂ Relative Energy/ FU feV) Fermi Energy 
(m 

I4/mcm 0.00 0.00 -7.45 

I4/m -5.03 -0.08 -7.08 

I4cm -0.24 -0.01 -7.30 

P4/mbm -5.09 -0.08 -7.11 

P4/ncc -0.87 -0.01 -7.33 
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Table 3: A comparison of Fermi energies for the calculations on SnTUTes in which Sn 

mixed on both T1(A) and T1(B) sites. 

Stoichiometry Nfcdng on Tl (A) site Fermi Enerev TeV) 

SnTlfTes 

SnTUTes 

SnTUTes 

SnTltTej 

Sno.75Tl4.25T e? 

TlsTes 

Sni.O 

Sno.75Tlo.25 

Sno.5oTlo .50 

Sno.25TIo.75 

Sno.75Tloa5 

T11.0 

-6.51 

-6.73 

-6.84 

-6.98 

-7.38 

-7.45 

Table 4: Atomic Orbital Parameters [16] 

Element Atomic Orbital HfifeVl C,i 

Tl 6s -11.60 2.52 
6p -5.80 1.77 

Te 5s -20.80 2.51 
5p -14.80 2.16 

Sn 5s -16.16 2.21 
5p -8.32 1.82 
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(a) AS4S4 S4N4 

• B 

o c 

(b) hypothetical B2C2iiet experimental B2C2net 

Figure la: AS4S4 vs. S4N4 where the more electronegative atom occupies the two-coordinate 
position. S atoms are shaded in both molecules. 

lb: Two coloring possibilities for the B2C2 net in MB2C2 systems. M atoms are not 
pictured. 
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Figure 2a: Structure ofTlsTes with Tl(A)-centered, Te octahedra highlighted. 
T1(B) atoms are dark atoms, and Te atoms are light atoms. 

2b: USTCS with T1(B) square antiprisms highlighted with shaded polyhedra. 
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- TIA - TeC -r 

-18.0 

TlgTes I4/mcin 

Figure 3; (a) The total DOS of TlsTes with the T1(A) and Te(C) states contributing to the 

shaded regions. The Fermi energy is highlighted by the dotted line at -7.45eV. (b) 

The COOP curve for the TI(A) - Te(C) intaactions whh the right side (+) of the 

center line representing the bonding states, and the left side (-) the antibonding 

states. 
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T1(A) T1(B) 

Figure 4; Expanded DOS curves for TlsTes with states associated with T1(A) Oeft), and 

T1(B) (right) highlighted. Notice that the T1(B) states lie lower in energy than most 

of the T1(A) states, supporting the assignment of T1(A) and Ti(B) 
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0.0 

-2.0 

-4.0 

-6.0 

-8.0 

-10.0 

-12.0 

-14.0 

-16.0 

-18.0 

Figure 5; (left) The DOS curve for the partial structure Tl(A)Te3. (middle) The DOS 

curve for the partial structure Tl(B)4Te3. Both partial structures contain the 

teUurium framework, whose states are mainly contained in the laige band from -

17.0 to -14.0 eV. (right) The total DOS for the complete TlsTes structure, which 

resembles a combination of the other two curves. 
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K 

-3.0 

-4.0 

-5.0 

-6.0 

-7.0 

-8.0 

-9.0 

-10.0 

-11.0 

r r M r X p N 

Figure 6: (top) The first Brillouin zone for a tetragonal cell, with special points labeled, 
(bottom) The electronic band structure of TlsTes fi-om T (0,0,0)-> M (V2, -V2,V2), 
(-hX'h) -> r (0,0,0) -> X (ViAO) ̂  P -> N (pXo) -> r (o,o,o). 
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I4/mcm 

I4/m P4/mbm I4cm P4/ncc 

Figure 7; Representations of the four hypothetical structures based on the 
distortion of the Te(C) position of the I4/mcm structure. The distortion in 
I4/m and P4/mbm results in alternating compressed and elongated 
octahedra. The distortion in I4cm and P4/ncc results in unsymmetrically 
compressed octahedra. 
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O T  

•1., 
« 
> 
'g -2' 

« •O 
Tl e o u a> 
(0 

•3< > 

-4« > 

•«« • 

- • - 14/m 

P4/mbm 

- • - P4/ncc 

•+- ->• 

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 

Change in Bond Length (x) 

Figure 8: The second derivative (d^E/du^) for the 4 distortions plotted versus the change 
in the T1(A) - Te(C) bond length. 



www.manaraa.com

213 

0.0 

-2.0 

-4.0 

-6.0 

-8.0 

-10.0 

-12.0 

-14.0 
14/ m 14/ mem I4cm 

Figure 9: Three total DOS curves for the undistorted I4/mcm structure and two of the 

distorted structures I4/m and I4cm are shown with the dotted lines representing the 

Fermi energies for each structure calculated with identical electron counts. 
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Lattice Energy Calculations 
UlAT = UliAD - UbM + UvDW 

5 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
0 

-0.1 

-0.2 + + 
- •  

•H 

- Hadefaiag 
Energy 

I - BM 
Repnlsion 

-VDW 

'Lattice 

O 0.01 0.02 0.03 

Shift of Te(C) position 

Figure 10: The four curves represent the four terms in the lattice energy equation, and are 
plotted as changes in energy (eV) vs. changes in the Te(C) position. In each case the 
greater the distortion of the Te(C) position, the greater the energy change. 
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0.0 

-2.0 

-4.0 

-6.0 

-8.0 

-10.0 

-12.0 

-14.0 

-16.0 

-10.0 

-20.0 

SllTl4Te3 

Figure 11: The total DOS curve for SnTUTes in which all the Sn atoms are in the T1(A) 
positions. Note the Fermi energy (dotted line, -6.5 eV) Ms in a gap in the DOS. 
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-2.0 

-6.0 

-8.0 

-10.0 

-12.0 

-14.0 

-16.0  

-la.o 

-20.0 

a C 

Figure 12 : (a) The total DOS curve for SnTUTes, in which all the Sn atoms are located on 
the T1(A) sites. The Fermi ener©r (-6.50 eV) is highlighted by the dotted line and 
falls in a gap in the DOS. 

(b) The total DOS curve for Sno.75TIo^(Sno.25Tl3.75)Te3 where 1/4 of the tin 
atoms have substituted onto the T1(B) sites. 

(c) The total DOS curve for Sno.5TIo.5(Sno.5oTl3.5)Te3 where 1/2 of the tin atoms 
have substituted onto the T1(B) sites. Notice the gap which existed at the Fermi 
energy in (a) and (b) is gone in this curve. 
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-12.0 

(a) (b) 

Figure 13: (a) Expanded DOS curve for (Sno.5Tlo.5)(n3.5Sno.5)Te3 with T1(A) states 
shaded. These states contribute to the peak near -7.0 eV just below the Fenni levd 
(-6.84 eV). 

(b) Expanded DOS curve for (Sno.5Tlo.5)(Tl3.5Snoj)Te3 with states of Sn(B) 
character which lie just above the Fermi level shaded. 
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Madelung Energy vs. Sn composition on TI(A) site 

 ̂ -72J)ol 
3 
(tj -72.50 • 

% -nM' >k 
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g •74M< % 

•S -75.00 < V 
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Figure 14: (top) The Madelung energy is plotted versus the Sn composition on the T1(A) 
site. The negative slope of the curve indicates that it is un&vorable to move Sn from 
the T1(A) to the Tl(B) site. The dotted line below the sofld line is the energy with a 
configurational entroy term included at 1000 K. (bottom) The total energy plotted 
versus the Sn composition on the T1(A) site. This curve has a positive but smaller 
slope than the top curve indicating that while the total energy decreases as Sn is 
moved from the T1(A) to the T1(B) position, the Madelung energy has the greater 
effect. 
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